Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 1992 Sep 1;286(Pt 2):451–457. doi: 10.1042/bj2860451

Angiotensin-converting enzyme of the human small intestine. Subunit and quaternary structure, biosynthesis and membrane association.

H Y Naim 1
PMCID: PMC1132919  PMID: 1326943

Abstract

Angiotensin-converting enzyme (ACE) was isolated from detergent-derived extracts of human intestinal brush-border membranes (BBMs) by immunoprecipitation using a monoclonal antibody. Analysis of the immunoprecipitates by SDS/PAGE revealed a polypeptide of apparent M(r) 184,000 under reducing and non-reducing conditions, indicating that ACE does not contain intermolecular disulphide bridges. The quaternary structure of ACE was examined using cross-linking experiments with dithiobis[succinimidylpropionate] (DSP) and density gradient centrifugation on sucrose gradients. Both approaches demonstrated that ACE is assembled in the membrane as a monomer. By contrast, the control glycoprotein aminopeptidase N (ApN) exists as a dimer. Biosynthetic labelling experiments in intestinal tissue explants demonstrated that the 184,000-M(r) protein is generated from a single-polypeptide, mannose-rich precursor of ACE (M(r) 175,000) by modification of the carbohydrate side-chains in the Golgi apparatus. The mode of association of the mature form of the enzyme with BBMs was investigated by hydrophobic labelling of right-side-out brush-border vesicles with the photoactivatable carbene-generating reagent 125I-labelled 3-(trifluoromethyl)-3-(m[formylamino]phenyl)diazirine (125I-labelled TID), followed by treatment with trypsin at dilutions that do not cause substantial degradation of ACE. These studies demonstrated that ACE is associated with the membrane via a hydrophobic segment. Furthermore, treatment of 35S-labelled inside-out membrane vesicles with trypsin revealed that ACE possesses a cytoplasmic tail, and therefore has a transmembraneous orientation.

Full text

PDF
451

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asp N. G., Gudmand-Höyer E., Andersen B., Berg N. O., Dahlqvist A. Distribution of disaccharidases, alkaline phosphatase, and some intracellular enzymes along the human small intestine. Scand J Gastroenterol. 1975;10(6):647–651. [PubMed] [Google Scholar]
  2. Bernstein K. E., Martin B. M., Edwards A. S., Bernstein E. A. Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem. 1989 Jul 15;264(20):11945–11951. [PubMed] [Google Scholar]
  3. Browning T. H., Trier J. S. Organ culture of mucosal biopsies of human small intestine. J Clin Invest. 1969 Aug;48(8):1423–1432. doi: 10.1172/JCI106108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Y. N., Riordan J. F. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site. Biochemistry. 1990 Nov 20;29(46):10493–10498. doi: 10.1021/bi00498a011. [DOI] [PubMed] [Google Scholar]
  5. Cowell G. M., Tranum-Jensen J., Sjöström H., Norén O. Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase. Biochem J. 1986 Jul 15;237(2):455–461. doi: 10.1042/bj2370455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crocker A. D., Munday K. A. The effect of the renin-angiotensin system on mucosal water and sodium transfer in everted sacs of rat jejunum. J Physiol. 1970 Feb;206(2):323–333. doi: 10.1113/jphysiol.1970.sp009015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cushman D. W., Cheung H. S. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta. 1971 Oct;250(1):261–265. doi: 10.1016/0005-2744(71)90142-2. [DOI] [PubMed] [Google Scholar]
  8. Danielsen E. M. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase. Biochemistry. 1990 Jan 9;29(1):305–308. doi: 10.1021/bi00453a042. [DOI] [PubMed] [Google Scholar]
  9. Das M., Hartley J. L., Soffers R. L. Serum angiotensin-converting enzyme. Isolation and relationship to the pulmonary enzyme. J Biol Chem. 1977 Feb 25;252(4):1316–1319. [PubMed] [Google Scholar]
  10. Defendini R., Zimmerman E. A., Weare J. A., Alhenc-Gelas F., Erdös E. G. Angiotensin-converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinology. 1983 Jul;37(1):32–40. doi: 10.1159/000123512. [DOI] [PubMed] [Google Scholar]
  11. Ehlers M. R., Fox E. A., Strydom D. J., Riordan J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. El-Dorry H. A., Bull H. G., Iwata K., Thornberry N. A., Cordes E. H., Soffer R. L. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J Biol Chem. 1982 Dec 10;257(23):14128–14133. [PubMed] [Google Scholar]
  13. El-Dorry H. A., Pickett C. B., MacGregor J. S., Soffer R. L. Tissue-specific expression of mRNAs for dipeptidyl carboxypeptidase isoenzymes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4295–4297. doi: 10.1073/pnas.79.14.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Erdös E. G., Skidgel R. A. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348. [PubMed] [Google Scholar]
  15. Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  16. Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  19. Igic R., Erdös E. G., Yeh H. S., Sorrells K., Nakajima T. Angiotensin I converting enzyme of the lung. Circ Res. 1972 Sep;31(9 Suppl):51–61. [PubMed] [Google Scholar]
  20. Jascur T., Matter K., Hauri H. P. Oligomerization and intracellular protein transport: dimerization of intestinal dipeptidylpeptidase IV occurs in the Golgi apparatus. Biochemistry. 1991 Feb 19;30(7):1908–1915. doi: 10.1021/bi00221a025. [DOI] [PubMed] [Google Scholar]
  21. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  22. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kumar R. S., Kusari J., Roy S. N., Soffer R. L., Sen G. C. Structure of testicular angiotensin-converting enzyme. A segmental mosaic isozyme. J Biol Chem. 1989 Oct 5;264(28):16754–16758. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lanzillo J. J., Stevens J., Dasarathy Y., Yotsumoto H., Fanburg B. L. Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J Biol Chem. 1985 Dec 5;260(28):14938–14944. [PubMed] [Google Scholar]
  26. Lattion A. L., Soubrier F., Allegrini J., Hubert C., Corvol P., Alhenc-Gelas F. The testicular transcript of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 1989 Jul 31;252(1-2):99–104. doi: 10.1016/0014-5793(89)80897-x. [DOI] [PubMed] [Google Scholar]
  27. Lüscher B., Rousseaux-Schmid M., Naim H. Y., MacDonald H. R., Bron C. Biosynthesis and maturation of the Lyt-2/3 molecular complex in mouse thymocytes. J Immunol. 1985 Sep;135(3):1937–1944. [PubMed] [Google Scholar]
  28. Naim H. Y., Sterchi E. E., Lentze M. J. Biosynthesis and maturation of lactase-phlorizin hydrolase in the human small intestinal epithelial cells. Biochem J. 1987 Jan 15;241(2):427–434. doi: 10.1042/bj2410427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naim H. Y., Sterchi E. E., Lentze M. J. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem. 1988 May 25;263(15):7242–7253. [PubMed] [Google Scholar]
  30. Naim H. Y., Sterchi E. E., Lentze M. J. Structure, biosynthesis, and glycosylation of human small intestinal maltase-glucoamylase. J Biol Chem. 1988 Dec 25;263(36):19709–19717. [PubMed] [Google Scholar]
  31. Ng K. K., Vane J. R. Conversion of angiotensin I to angiotensin II. Nature. 1967 Nov 25;216(5117):762–766. doi: 10.1038/216762a0. [DOI] [PubMed] [Google Scholar]
  32. Patchett A. A., Cordes E. H. The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin-converting enzyme. Adv Enzymol Relat Areas Mol Biol. 1985;57:1–84. doi: 10.1002/9780470123034.ch1. [DOI] [PubMed] [Google Scholar]
  33. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  34. Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
  35. Semenza G. Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and renal tubuli. Annu Rev Cell Biol. 1986;2:255–313. doi: 10.1146/annurev.cb.02.110186.001351. [DOI] [PubMed] [Google Scholar]
  36. Skeggs L. T., Dorer F. E., Kahn J. R., Lentz K. E., Levine M. The biochemistry of the renin-angiotensin system and its role in hypertension. Am J Med. 1976 May 31;60(6):737–748. doi: 10.1016/0002-9343(76)90888-3. [DOI] [PubMed] [Google Scholar]
  37. Soffer R. L. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem. 1976;45:73–94. doi: 10.1146/annurev.bi.45.070176.000445. [DOI] [PubMed] [Google Scholar]
  38. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spiess M., Brunner J., Semenza G. Hydrophobic labeling, isolation, and partial characterization of the NH2-terminal membranous segment of sucrase-isomaltase complex. J Biol Chem. 1982 Mar 10;257(5):2370–2377. [PubMed] [Google Scholar]
  40. Sterchi E. E., Woodley J. F. Peptide hydrolases of the human small intestinal mucosa: distribution of activities between brush border membranes and cytosol. Clin Chim Acta. 1980 Mar 14;102(1):49–56. doi: 10.1016/0009-8981(80)90432-5. [DOI] [PubMed] [Google Scholar]
  41. Ward P. E., Sheridan M. A., Hammon K. J., Erdös E. G. Angiotensin I converting enzyme (kininase II) of the brush border of human and swine intestine. Biochem Pharmacol. 1980 Jun 1;29(11):1525–1529. doi: 10.1016/0006-2952(80)90603-6. [DOI] [PubMed] [Google Scholar]
  42. Yang H. Y., Erdös E. G., Levin Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta. 1970 Aug 21;214(2):374–376. doi: 10.1016/0005-2795(70)90017-6. [DOI] [PubMed] [Google Scholar]
  43. Yoshioka M., Erickson R. H., Woodley J. F., Gulli R., Guan D., Kim Y. S. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am J Physiol. 1987 Dec;253(6 Pt 1):G781–G786. doi: 10.1152/ajpgi.1987.253.6.G781. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES