Abstract
H-protein is the lipoyl-protein component of the glycine decarboxylase complex, which catalyses, with serine hydroxymethyltransferase, the mitochondrial step of photorespiration in plants. We have isolated and characterized the gene (gdcH) encoding the H-protein in pea (Pisum sativum L.). The H-protein gene is distributed in a stretch of about 1.55 kbp and contains three introns (75, 64 and 185 bp) located in the coding region. No intervening sequences were detected in the 5' and 3' non-coding regions. This intron-exon structure contrasts with the preliminary H-protein gene structures reported for human and chicken, where these genes (dispersed on 13 and 8 kbp genomic fragments respectively) are composed of five highly conserved exons and are interrupted by four long introns. Two main transcription sites were detected by primer extension of RNA. The first transcriptional initiation site was assigned the +1 position and correlated with a putative TATA box located at position -26. The second transcriptional start site was not correlated with a putative TATA box, but may be regulated by an 'initiator' element described by Smale & Baltimore [(1989) Cell (Cambridge, Mass.) 57, 103-113] which contains, within itself, the transcription start site. The presence of two potential promoters may be related to the specialized overexpression pattern of H-protein in leaves, in order to support photorespiration.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bourguignon J., Neuburger M., Douce R. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase. Biochem J. 1988 Oct 1;255(1):169–178. doi: 10.1042/bj2550169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
- Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol. 1990 Apr 20;212(4):563–578. doi: 10.1016/0022-2836(90)90223-9. [DOI] [PubMed] [Google Scholar]
- Douce R., Moore A. L., Neuburger M. Isolation and oxidative properties of intact mitochondria isolated from spinach leaves. Plant Physiol. 1977 Oct;60(4):625–628. doi: 10.1104/pp.60.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara K., Okamura-Ikeda K., Hayasaka K., Motokawa Y. The primary structure of human H-protein of the glycine cleavage system deduced by cDNA cloning. Biochem Biophys Res Commun. 1991 Apr 30;176(2):711–716. doi: 10.1016/s0006-291x(05)80242-6. [DOI] [PubMed] [Google Scholar]
- Jackson I. J. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 1991 Jul 25;19(14):3795–3798. doi: 10.1093/nar/19.14.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juretić N., Jaussi R., Mattes U., Christen P. Genes of nuclear encoded mitochondrial proteins: evidence for a variant of the 3' splice-site consensus sequence. Nucleic Acids Res. 1987 Dec 23;15(24):10083–10086. doi: 10.1093/nar/15.24.10083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem. 1973 Jun 27;1(2):169–187. doi: 10.1007/BF01659328. [DOI] [PubMed] [Google Scholar]
- Kim Y., Oliver D. J. Molecular cloning, transcriptional characterization, and sequencing of cDNA encoding the H-protein of the mitochondrial glycine decarboxylase complex in peas. J Biol Chem. 1990 Jan 15;265(2):848–853. [PubMed] [Google Scholar]
- Koyata H., Hiraga K. Partial structure of the human H-protein gene. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1072–1077. doi: 10.1016/0006-291x(91)91001-s. [DOI] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macherel D., Lebrun M., Gagnon J., Neuburger M., Douce R. cDNA cloning, primary structure and gene expression for H-protein, a component of the glycine-cleavage system (glycine decarboxylase) of pea (Pisum sativum) leaf mitochondria. Biochem J. 1990 Jun 15;268(3):783–789. doi: 10.1042/bj2680783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motokawa Y., Kikuchi G. Glycine metabolism in rat liver mitochondria. V. Intramitochondrial localization of the reversible glycine cleavage system and serine hydroxymethyltransferase. Arch Biochem Biophys. 1971 Oct;146(2):461–464. doi: 10.1016/0003-9861(71)90149-4. [DOI] [PubMed] [Google Scholar]
- Oliver D. J., Neuburger M., Bourguignon J., Douce R. Interaction between the Component Enzymes of the Glycine Decarboxylase Multienzyme Complex. Plant Physiol. 1990 Oct;94(2):833–839. doi: 10.1104/pp.94.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senapathy P., Shapiro M. B., Harris N. L. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. 1990;183:252–278. doi: 10.1016/0076-6879(90)83018-5. [DOI] [PubMed] [Google Scholar]
- Smale S. T., Baltimore D. The "initiator" as a transcription control element. Cell. 1989 Apr 7;57(1):103–113. doi: 10.1016/0092-8674(89)90176-1. [DOI] [PubMed] [Google Scholar]
- Walker J. L., Oliver D. J. Glycine decarboxylase multienzyme complex. Purification and partial characterization from pea leaf mitochondria. J Biol Chem. 1986 Feb 15;261(5):2214–2221. [PubMed] [Google Scholar]
- Yamamoto M., Koyata H., Matsui C., Hiraga K. The glycine cleavage system. Occurrence of two types of chicken H-protein mRNAs presumably formed by the alternative use of the polyadenylation consensus sequences in a single exon. J Biol Chem. 1991 Feb 15;266(5):3317–3322. [PubMed] [Google Scholar]

