Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Sep 1;286(Pt 2):641–648. doi: 10.1042/bj2860641

Activation of neuromedin B-preferring bombesin receptors on rat glioblastoma C-6 cells increases cellular Ca2+ and phosphoinositides.

L H Wang 1, J F Battey 1, E Wada 1, J T Lin 1, S Mantey 1, D H Coy 1, R T Jensen 1
PMCID: PMC1132948  PMID: 1326946

Abstract

Recent cloning studies confirm the presence of two subtypes of bombesin (Bn) receptors. In contrast to the gastrin-releasing peptide (GRP)-preferring subtype, which has been widely studied, nothing is known about the cellular mechanisms of the neuromedin B (NMB)-preferring subtype, which occurs widely in the central nervous system and gastrointestinal tissues, partially because of the lack of a cell line with functional receptors. In the present study we have investigated Bn receptors on the rat glioblastoma cell line C-6, reported to contain mRNA of the NMB receptor subtype. Binding of 125I-[D-Tyr0]NMB to these cells was time- and temperature-dependent, saturable, reversible, and only inhibited by Bn receptor agonists or antagonists. For Bn receptor agonists the relative potencies were: NMB (1.7 nM) approximately equal to litorin (3 nM) greater than ranatensin (8 nM) greater than Bn (19 nM) greater than neuromedin C (NMC) (210 nM) greater than GRP (500 nM). These relative affinities were almost identical to those for the NMB receptor subtype on rat oesophageal tissue and for Balb 3T3 cells stably transfected with the NMB receptor subtype. These potencies differed from those for the GRP receptor subtype on rat pancreatic acini [Bn approximately equal to litorin (4 nM) greater than ranatensin, NMC, GRP (15-20 nM) much greater than NMB (351 nM)]. The relative potencies of four different classes of Bn receptor antagonists were compared. Results from C-6 tumour cells agreed closely with those for binding to the NMB receptor subtype on rat oesophageal tissue and in Balb 3T3 cells stably transfected with this receptor, and differed markedly from those for binding to the GRP receptor subtype on rat pancreatic acini. Four Bn receptor antagonists had a higher affinity for the GRP subtype ([D-Phe6]Bn-(6-13)ethyl ester (500 x), [D-Phe6][psi 13-14,Cpa14]Bn- (6-14) (70 x) (where psi 13-14 refers to the replacement of the -CONH- peptide bond between Leu13 and Met14 by -CH2NH2) [psi 13-14,Leu14]Bn, [D-Phe6]Bn-(6-13) propylamide (30 x)] and two had a higher affinity for the NMB subtype on C-6 cells and transfected cells ([D-Pro4,D-Trp7,9,10] substance P-(4-11) (9 x) and [Tyr4,D-Phe12]Bn (18 x)]. In C-6 tumour cells, Bn receptor agonists caused an increase in cytosolic Ca2+ and the generation of inositol phosphates. For both responses, NMB was more than 50-fold more potent than GRP. Neither NMB nor GRP increased cyclic AMP. These results demonstrate that the rat glioblastoma cell line C-6 possesses functional NMB-preferring Bn receptors, and agonist occupation activates phospholipase C, thus increasing cytosolic Ca2+ and inositol phosphate formation. Because the interaction of Bn-related peptides with C-6 cell receptors is identical with that reported in other tissues containing the mRNA for the NMB subtype, this cell line should prove useful in exploring further the cellular basis of action of the peptides that interact with this receptor in the central nervous system and various other tissues.

Full text

PDF
641

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers H. E., Liou S. Y., Stopa E. G., Zoeller R. T. Interaction of colocalized neuropeptides: functional significance in the circadian timing system. J Neurosci. 1991 Mar;11(3):846–851. doi: 10.1523/JNEUROSCI.11-03-00846.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Battey J. F., Way J. M., Corjay M. H., Shapira H., Kusano K., Harkins R., Wu J. M., Slattery T., Mann E., Feldman R. I. Molecular cloning of the bombesin/gastrin-releasing peptide receptor from Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):395–399. doi: 10.1073/pnas.88.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bologna M., Festuccia C., Muzi P., Biordi L., Ciomei M. Bombesin stimulates growth of human prostatic cancer cells in vitro. Cancer. 1989 May 1;63(9):1714–1720. doi: 10.1002/1097-0142(19900501)63:9<1714::aid-cncr2820630912>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  5. Brown M. R., Carver K., Fisher L. A. Bombesin: central nervous system actions to affect the autonomic nervous system. Ann N Y Acad Sci. 1988;547:174–182. doi: 10.1111/j.1749-6632.1988.tb23885.x. [DOI] [PubMed] [Google Scholar]
  6. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  7. Chronwall B. M., Pisano J. J., Bishop J. F., Moody T. W., O'Donohue T. L. Biochemical and histochemical characterization of ranatensin immunoreactive peptides in rat brain: lack of coexistence with bombesin/GRP. Brain Res. 1985 Jul 8;338(1):97–113. doi: 10.1016/0006-8993(85)90252-5. [DOI] [PubMed] [Google Scholar]
  8. Corps A. N., Rees L. H., Brown K. D. A peptide that inhibits the mitogenic stimulation of Swiss 3T3 cells by bombesin or vasopressin. Biochem J. 1985 Nov 1;231(3):781–784. doi: 10.1042/bj2310781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coy D. H., Taylor J. E., Jiang N. Y., Kim S. H., Wang L. H., Huang S. C., Moreau J. P., Gardner J. D., Jensen R. T. Short-chain pseudopeptide bombesin receptor antagonists with enhanced binding affinities for pancreatic acinar and Swiss 3T3 cells display strong antimitotic activity. J Biol Chem. 1989 Sep 5;264(25):14691–14697. [PubMed] [Google Scholar]
  10. Cuttitta F., Carney D. N., Mulshine J., Moody T. W., Fedorko J., Fischler A., Minna J. D. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. 1985 Aug 29-Sep 4Nature. 316(6031):823–826. doi: 10.1038/316823a0. [DOI] [PubMed] [Google Scholar]
  11. Donnelly M., Nelson J., Walker B., Gray J., Murphy R. F. Mitogenic activity of GRP18-27 analogues on the ZR-75-1 human breast cancer cell line. Biochem Soc Trans. 1990 Apr;18(2):354–354. doi: 10.1042/bst0180354. [DOI] [PubMed] [Google Scholar]
  12. Erspamer V. Discovery, isolation, and characterization of bombesin-like peptides. Ann N Y Acad Sci. 1988;547:3–9. doi: 10.1111/j.1749-6632.1988.tb23870.x. [DOI] [PubMed] [Google Scholar]
  13. Ghatei M. A., Jung R. T., Stevenson J. C., Hillyard C. J., Adrian T. E., Lee Y. C., Christofides N. D., Sarson D. L., Mashiter K., MacIntyre I. Bombesin: action on gut hormones and calcium in man. J Clin Endocrinol Metab. 1982 May;54(5):980–985. doi: 10.1210/jcem-54-5-980. [DOI] [PubMed] [Google Scholar]
  14. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  15. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  16. Jensen R. T., Coy D. H. Progress in the development of potent bombesin receptor antagonists. Trends Pharmacol Sci. 1991 Jan;12(1):13–19. doi: 10.1016/0165-6147(91)90483-9. [DOI] [PubMed] [Google Scholar]
  17. Jensen R. T., Coy D. H., Saeed Z. A., Heinz-Erian P., Mantey S., Gardner J. D. Interaction of bombesin and related peptides with receptors on pancreatic acinar cells. Ann N Y Acad Sci. 1988;547:138–149. doi: 10.1111/j.1749-6632.1988.tb23882.x. [DOI] [PubMed] [Google Scholar]
  18. Jensen R. T., Gardner J. D. Identification and characterization of receptors for secretagogues on pancreatic acinar cells. Fed Proc. 1981 Aug;40(10):2486–2496. [PubMed] [Google Scholar]
  19. Jensen R. T., Heinz-Erian P., Mantey S., Jones S. W., Gardner J. D. Characterization of ability of various substance P antagonists to inhibit action of bombesin. Am J Physiol. 1988 Jun;254(6 Pt 1):G883–G890. doi: 10.1152/ajpgi.1988.254.6.G883. [DOI] [PubMed] [Google Scholar]
  20. Jensen R. T., Lemp G. F., Gardner J. D. Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem. 1982 May 25;257(10):5554–5559. [PubMed] [Google Scholar]
  21. Jensen R. T., Moody T., Pert C., Rivier J. E., Gardner J. D. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6139–6143. doi: 10.1073/pnas.75.12.6139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaneto A., Kaneko T., Nakaya S., Kajinuma H., Kosaka K. Effect of bombesin infused intrapancreatically on glucagon and insulin secretion. Metabolism. 1978 May;27(5):549–553. doi: 10.1016/0026-0495(78)90021-5. [DOI] [PubMed] [Google Scholar]
  23. Ladenheim E. E., Jensen R. T., Mantey S. A., McHugh P. R., Moran T. H. Receptor heterogeneity for bombesin-like peptides in the rat central nervous system. Brain Res. 1990 Dec 24;537(1-2):233–240. doi: 10.1016/0006-8993(90)90363-g. [DOI] [PubMed] [Google Scholar]
  24. Ladenheim E. E., Jensen R. T., Mantey S. A., McHugh P. R., Moran T. H. Receptor heterogeneity for bombesin-like peptides in the rat central nervous system. Brain Res. 1990 Dec 24;537(1-2):233–240. doi: 10.1016/0006-8993(90)90363-g. [DOI] [PubMed] [Google Scholar]
  25. Mahmoud S., Palaszynski E., Fiskum G., Coy D. H., Moody T. W. Small cell lung cancer bombesin receptors are antagonized by reduced peptide bond analogues. Life Sci. 1989;44(5):367–373. doi: 10.1016/0024-3205(89)90231-2. [DOI] [PubMed] [Google Scholar]
  26. Millar J. B., Rozengurt E. Bombesin enhancement of cAMP accumulation in Swiss 3T3 cells: evidence of a dual mechanism of action. J Cell Physiol. 1988 Nov;137(2):214–222. doi: 10.1002/jcp.1041370203. [DOI] [PubMed] [Google Scholar]
  27. Moody T. W., Korman L. Y., O'Donohue T. L. Neuromedin B-like peptides in rat brain: biochemical characterization, mechanism of release and localization in synaptosomes. Peptides. 1986 Sep-Oct;7(5):815–820. doi: 10.1016/0196-9781(86)90100-2. [DOI] [PubMed] [Google Scholar]
  28. Moody T. W., Murphy A., Mahmoud S., Fiskum G. Bombesin-like peptides elevate cytosolic calcium in small cell lung cancer cells. Biochem Biophys Res Commun. 1987 Aug 31;147(1):189–195. doi: 10.1016/s0006-291x(87)80105-5. [DOI] [PubMed] [Google Scholar]
  29. Moody T. W., Pert C. B., Rivier J., Brown M. R. Bomebesin: specific binding to rat brain membranes. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5372–5376. doi: 10.1073/pnas.75.11.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Märki W., Brown M., Rivier J. E. Bombesin analogs: effects on thermoregulation and glucose metabolism. Peptides. 1981;2 (Suppl 2):169–177. doi: 10.1016/0196-9781(81)90027-9. [DOI] [PubMed] [Google Scholar]
  32. Panula P., Yang H. Y., Costa E. Neuronal location of the bombesin-like immunoreactivity in the central nervous system of the rat. Regul Pept. 1982 Oct;4(5):275–283. doi: 10.1016/0167-0115(82)90120-3. [DOI] [PubMed] [Google Scholar]
  33. Regoli D., Dion S., Rhaleb N. E., Drapeau G., Rouissi N., D'Orléans-Juste P. Receptors for neurokinins, tachykinins, and bombesin: a pharmacological study. Ann N Y Acad Sci. 1988;547:158–173. doi: 10.1111/j.1749-6632.1988.tb23884.x. [DOI] [PubMed] [Google Scholar]
  34. Roth K. A., Weber E., Barchas J. D. Distribution of gastrin releasing peptide--bombesin-like immunostaining in rat brain. Brain Res. 1982 Nov 18;251(2):277–282. doi: 10.1016/0006-8993(82)90744-2. [DOI] [PubMed] [Google Scholar]
  35. Rowley W. H., Sato S., Huang S. C., Collado-Escobar D. M., Beaven M. A., Wang L. H., Martinez J., Gardner J. D., Jensen R. T. Cholecystokinin-induced formation of inositol phosphates in pancreatic acini. Am J Physiol. 1990 Oct;259(4 Pt 1):G655–G665. doi: 10.1152/ajpgi.1990.259.4.G655. [DOI] [PubMed] [Google Scholar]
  36. Rozengurt E. Bombesin-induction of cell proliferation in 3T3 cells. Specific receptors and early signaling events. Ann N Y Acad Sci. 1988;547:277–292. doi: 10.1111/j.1749-6632.1988.tb23896.x. [DOI] [PubMed] [Google Scholar]
  37. Sasaki Y., Coy D. H. Solid phase synthesis of peptides containing the CH2NH peptide bond isostere. Peptides. 1987 Jan-Feb;8(1):119–121. doi: 10.1016/0196-9781(87)90174-4. [DOI] [PubMed] [Google Scholar]
  38. Sausville E. A., Moyer J. D., Heikkila R., Neckers L. M., Trepel J. B. A correlation of bombesin-responsiveness with myc-family gene expression in small cell lung carcinoma cell lines. Ann N Y Acad Sci. 1988;547:310–321. doi: 10.1111/j.1749-6632.1988.tb23899.x. [DOI] [PubMed] [Google Scholar]
  39. Severi C., Jensen R. T., Erspamer V., D'Arpino L., Coy D. H., Torsoli A., Delle Fave G. Different receptors mediate the action of bombesin-related peptides on gastric smooth muscle cells. Am J Physiol. 1991 May;260(5 Pt 1):G683–G690. doi: 10.1152/ajpgi.1991.260.5.G683. [DOI] [PubMed] [Google Scholar]
  40. Spindel E. R., Giladi E., Brehm P., Goodman R. H., Segerson T. P. Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. Mol Endocrinol. 1990 Dec;4(12):1956–1963. doi: 10.1210/mend-4-12-1956. [DOI] [PubMed] [Google Scholar]
  41. Von Schrenck T., Heinz-Erian P., Moran T., Mantey S. A., Gardner J. D., Jensen R. T. Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors. Am J Physiol. 1989 Apr;256(4 Pt 1):G747–G758. doi: 10.1152/ajpgi.1989.256.4.G747. [DOI] [PubMed] [Google Scholar]
  42. Wada E., Way J., Lebacq-Verheyden A. M., Battey J. F. Neuromedin B and gastrin-releasing peptide mRNAs are differentially distributed in the rat nervous system. J Neurosci. 1990 Sep;10(9):2917–2930. doi: 10.1523/JNEUROSCI.10-09-02917.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wada E., Way J., Shapira H., Kusano K., Lebacq-Verheyden A. M., Coy D., Jensen R., Battery J. cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron. 1991 Mar;6(3):421–430. doi: 10.1016/0896-6273(91)90250-4. [DOI] [PubMed] [Google Scholar]
  44. Wang L. H., Coy D. H., Taylor J. E., Jiang N. Y., Kim S. H., Moreau J. P., Huang S. C., Mantey S. A., Frucht H., Jensen R. T. Desmethionine alkylamide bombesin analogues: a new class of bombesin receptor antagonists with potent antisecretory activity in pancreatic acini and antimitotic activity in Swiss 3T3 cells. Biochemistry. 1990 Jan 23;29(3):616–622. doi: 10.1021/bi00455a004. [DOI] [PubMed] [Google Scholar]
  45. Wang L. H., Coy D. H., Taylor J. E., Jiang N. Y., Moreau J. P., Huang S. C., Frucht H., Haffar B. M., Jensen R. T. des-Met carboxyl-terminally modified analogues of bombesin function as potent bombesin receptor antagonists, partial agonists, or agonists. J Biol Chem. 1990 Sep 15;265(26):15695–15703. [PubMed] [Google Scholar]
  46. Weber S., Zuckerman J. E., Bostwick D. G., Bensch K. G., Sikic B. I., Raffin T. A. Gastrin releasing peptide is a selective mitogen for small cell lung carcinoma in vitro. J Clin Invest. 1985 Jan;75(1):306–309. doi: 10.1172/JCI111690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Westendorf J. M., Schonbrunn A. Characterization of bombesin receptors in a rat pituitary cell line. J Biol Chem. 1983 Jun 25;258(12):7527–7535. [PubMed] [Google Scholar]
  48. Woll P. J., Coy D. H., Rozengurt E. [Leu13-psi(CH2NH)Leu14]bombesin is a specific bombesin receptor antagonist in Swiss 3T3 cells. Biochem Biophys Res Commun. 1988 Aug 30;155(1):359–365. doi: 10.1016/s0006-291x(88)81093-3. [DOI] [PubMed] [Google Scholar]
  49. Woll P. J., Rozengurt E. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1859–1863. doi: 10.1073/pnas.85.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zachary I., Rozengurt E. High-affinity receptors for peptides of the bombesin family in Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7616–7620. doi: 10.1073/pnas.82.22.7616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhou Z. C., Gardner J. D., Jensen R. T. Interaction of peptides related to VIP and secretin with guinea pig pancreatic acini. Am J Physiol. 1989 Feb;256(2 Pt 1):G283–G290. doi: 10.1152/ajpgi.1989.256.2.G283. [DOI] [PubMed] [Google Scholar]
  52. von Schrenck T., Wang L. H., Coy D. H., Villanueva M. L., Mantey S., Jensen R. T. Potent bombesin receptor antagonists distinguish receptor subtypes. Am J Physiol. 1990 Sep;259(3 Pt 1):G468–G473. doi: 10.1152/ajpgi.1990.259.3.G468. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES