Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Sep 15;286(Pt 3):729–735.

Binding characteristics of Mn2+, Co2+ and Mg2+ ions with several D-xylose isomerases.

P B Van Bastelaere 1, M Callens 1, W A Vangrysperre 1, H L Kersters-Hilderson 1
PMCID: PMC1132964  PMID: 1417732

Abstract

D-Xylose isomerases are metal-ion (Mn2+, Co2+, Mg2+)-requiring tetrameric enzymes. Both the stoichiometry and the binding constants have been determined by titrating the metal-ion-free enzymes from five organisms (Actinomycetaceae and more divergent bacteria) with the respective metal ions using the enzyme activity as indicator of active complex-formation. The following characteristics have been observed for each specific isomerase: (i) two essential metal ion sites (one structural and one catalytic) exist per subunit; (ii) the metal ion binding at one site does not affect the binding at the other site; (iii) of the four possible configurations E, aE, Eb and aEb, only the double-occupied enzyme is active; (iv) the metal ion activation is a time-dependent process; (v) the dissociation constants for both the structural and catalytic sites may be identical or may differ by one or higher orders of magnitude; (vi) metal ion binding is stronger in the order Mn2+ greater than Co2+ much greater than Mg2+; (vii) pronounced increases in Km values concomitant with decreasing equivalents of metal ion added are only observed in the presence of Mg2+ ions.

Full text

PDF
729

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Callens M., Tomme P., Kersters-Hilderson H., Cornelis R., Vangrysperre W., De Bruyne C. K. Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber. Biochem J. 1988 Feb 15;250(1):285–290. doi: 10.1042/bj2500285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carrell H. L., Glusker J. P., Burger V., Manfre F., Tritsch D., Biellmann J. F. X-ray analysis of D-xylose isomerase at 1.9 A: native enzyme in complex with substrate and with a mechanism-designed inactivator. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4440–4444. doi: 10.1073/pnas.86.12.4440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Collyer C. A., Henrick K., Blow D. M. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol. 1990 Mar 5;212(1):211–235. doi: 10.1016/0022-2836(90)90316-E. [DOI] [PubMed] [Google Scholar]
  4. Dauter Z., Dauter M., Hemker J., Witzel H., Wilson K. S. Crystallisation and preliminary analysis of glucose isomerase from Streptomyces albus. FEBS Lett. 1989 Apr 10;247(1):1–8. doi: 10.1016/0014-5793(89)81227-x. [DOI] [PubMed] [Google Scholar]
  5. Farber G. K., Glasfeld A., Tiraby G., Ringe D., Petsko G. A. Crystallographic studies of the mechanism of xylose isomerase. Biochemistry. 1989 Sep 5;28(18):7289–7297. doi: 10.1021/bi00444a022. [DOI] [PubMed] [Google Scholar]
  6. Hanes C. S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J. 1932;26(5):1406–1421. doi: 10.1042/bj0261406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henrick K., Collyer C. A., Blow D. M. Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. J Mol Biol. 1989 Jul 5;208(1):129–157. doi: 10.1016/0022-2836(89)90092-2. [DOI] [PubMed] [Google Scholar]
  8. Huang C. Y. Determination of binding stoichiometry by the continuous variation method: the Job plot. Methods Enzymol. 1982;87:509–525. doi: 10.1016/s0076-6879(82)87029-8. [DOI] [PubMed] [Google Scholar]
  9. Loontiens F. G., Regenfuss P., Zechel A., Dumortier L., Clegg R. M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry. 1990 Sep 25;29(38):9029–9039. doi: 10.1021/bi00490a021. [DOI] [PubMed] [Google Scholar]
  10. Rey F., Jenkins J., Janin J., Lasters I., Alard P., Claessens M., Matthyssens G., Wodak S. Structural analysis of the 2.8 A model of Xylose isomerase from Actinoplanes missouriensis. Proteins. 1988;4(3):165–172. doi: 10.1002/prot.340040303. [DOI] [PubMed] [Google Scholar]
  11. Vangrysperre W., Kersters-Hilderson H., Callens M., De Bruyne C. K. Reaction of Woodward's reagent K with D-xylose isomerases. Modification of an active site carboxylate residue. Biochem J. 1989 May 15;260(1):163–169. doi: 10.1042/bj2600163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vangrysperre W., Van Damme J., Vandekerckhove J., De Bruyne C. K., Cornelis R., Kersters-Hilderson H. Localization of the essential histidine and carboxylate group in D-xylose isomerases. Biochem J. 1990 Feb 1;265(3):699–705. doi: 10.1042/bj2650699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Whitlow M., Howard A. J., Finzel B. C., Poulos T. L., Winborne E., Gilliland G. L. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins. 1991;9(3):153–173. doi: 10.1002/prot.340090302. [DOI] [PubMed] [Google Scholar]
  14. van Bastelaere P., Vangrysperre W., Kersters-Hilderson H. Kinetic studies of Mg(2+)-, Co(2+)- and Mn(2+)-activated D-xylose isomerases. Biochem J. 1991 Aug 15;278(Pt 1):285–292. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES