Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Sep 15;286(Pt 3):813–817. doi: 10.1042/bj2860813

Permeability of rat liver microsomal membrane to glucose 6-phosphate.

R Fulceri 1, G Bellomo 1, A Gamberucci 1, H M Scott 1, A Burchell 1, A Benedetti 1
PMCID: PMC1132976  PMID: 1417741

Abstract

Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer revealed the following. (1) The increase in extravesicular osmolality by addition of glucose 6-phosphate or mannose 6-phosphate (25 mM each) caused a rapid shrinking of microsomal vesicles. After shrinkage, a rapid swelling phase (t1/2 approx. 22 s) was present with glucose 6-phosphate but absent with mannose 6-phosphate, indicating that the former had entered microsomal vesicles, but the latter had not. (2) Almost identical results were obtained in the absence of any glucose 6-phosphate hydrolysis, i.e. with microsomes pre-treated with 100 microM-vanadate. (3) The anion-channel blocker 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid (DIDS) suppressed the glucose 6-phosphate-induced swelling phase. (4) The swelling phase was more prolonged as the glucose 6-phosphate concentration increased (t1/2 = 16 +/- 3, 22 +/- 3 and 35 +/- 4 s with 25 mM, 37.5 mM- and 50 mM-glucose 6-phosphate respectively). The behaviour of glucose-6-phosphatase activity of intact and disrupted microsomes measured in the presence of high concentrations (less than 30 mM) of substrate also indicated the saturation of the glucose 6-phosphate permeation system by extravesicular concentrations of glucose 6-phosphate higher than 20-30 mM. Additional experiments showed that vanadate-treated microsomes pre-equilibrated with 0.1 mM- and 1.0 mM-glucose 6-phosphate (and [1-14C]glucose 6-phosphate as a tracer) rapidly (t1/2 less than 20 s) released [1-14C]glucose 6-phosphate when diluted in a glucose 6-phosphate-free medium. The efflux of [1-14C]glucose 6-phosphate was largely prevented by DIDS, allowing an evaluation of the intravesicular space of glucose 6-phosphate of approx. 1.0 microliter/mg of microsomal protein.

Full text

PDF
813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  2. Arion W. J., Wallin B. K., Lange A. J., Ballas L. M. On the involvement of a glucose 6-phosphate transport system in the function of microsomal glucose 6-phosphatase. Mol Cell Biochem. 1975 Feb 28;6(2):75–83. doi: 10.1007/BF01732001. [DOI] [PubMed] [Google Scholar]
  3. Ballas L. M., Arion W. J. Measurement of glucose 6-phosphate penetration into liver microsomes. Confirmation of substrate transport in the glucose-6-phosphatase system. J Biol Chem. 1977 Dec 10;252(23):8512–8518. [PubMed] [Google Scholar]
  4. Benedetti A., Fulceri R., Comporti M. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase. Biochim Biophys Acta. 1985 Jun 27;816(2):267–277. doi: 10.1016/0005-2736(85)90494-8. [DOI] [PubMed] [Google Scholar]
  5. Benedetti A., Fulceri R., Romani A., Comporti M. Stimulatory effect of glucose 6-phosphate on the non-mitochondrial Ca2+ uptake in permeabilized hepatocytes and Ca2+ release by inositol trisphosphate. Biochim Biophys Acta. 1987 May 18;928(3):282–286. doi: 10.1016/0167-4889(87)90187-x. [DOI] [PubMed] [Google Scholar]
  6. Berteloot A., Vidal H., van de Werve G. Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity. J Biol Chem. 1991 Mar 25;266(9):5497–5507. [PubMed] [Google Scholar]
  7. Brattin W. J., Jr, Waller R. L., Recknagel R. O. Analysis of microsomal calcium sequestration by steady state isotope exchange. Enzyme kinetics and role of membrane permeability. J Biol Chem. 1982 Sep 10;257(17):10044–10051. [PubMed] [Google Scholar]
  8. Burchell A., Hume R., Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988 Apr 15;173(2):183–191. doi: 10.1016/0009-8981(88)90256-2. [DOI] [PubMed] [Google Scholar]
  9. Burchell A. Molecular pathology of glucose-6-phosphatase. FASEB J. 1990 Sep;4(12):2978–2988. doi: 10.1096/fasebj.4.12.2168325. [DOI] [PubMed] [Google Scholar]
  10. Burchell A., Waddell I. D. The molecular basis of the hepatic microsomal glucose-6-phosphatase system. Biochim Biophys Acta. 1991 Apr 17;1092(2):129–137. doi: 10.1016/0167-4889(91)90146-o. [DOI] [PubMed] [Google Scholar]
  11. Fulceri R., Bellomo G., Gamberucci A., Benedetti A. Liver glucose-6-phosphatase activity is not modulated by physiological intracellular Ca2+ concentrations. Biochem J. 1991 May 1;275(Pt 3):805–807. doi: 10.1042/bj2750805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HERS H. G., BERTHET J., BERTHET L., DE DUVE C. Le système hexose-phosphatasique. III. Localisation intra-cellulaire des ferments par centrifugation fractionnée. Bull Soc Chim Biol (Paris) 1951;33(1-2):21–41. [PubMed] [Google Scholar]
  13. Henne V., Söling H. D. Guanosine 5'-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate. FEBS Lett. 1986 Jul 7;202(2):267–273. doi: 10.1016/0014-5793(86)80699-8. [DOI] [PubMed] [Google Scholar]
  14. Kimura S., Robison B. C., Kraus-Friedmann N. Inhibitor of anion transport, DIDS, releases Ca2+ from hepatic microsomes. Biochem Biophys Res Commun. 1988 Feb 29;151(1):396–401. doi: 10.1016/0006-291x(88)90606-7. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Meissner G., Allen R. Evidence for two types of rat liver microsomes with differing permeability to glucose and other small molecules. J Biol Chem. 1981 Jun 25;256(12):6413–6422. [PubMed] [Google Scholar]
  17. Meissner G. Ionic permeability of isolated muscle sarcoplasmic reticulum and liver endoplasmic reticulum vesicles. Methods Enzymol. 1988;157:417–437. doi: 10.1016/0076-6879(88)57094-5. [DOI] [PubMed] [Google Scholar]
  18. Meissner G., McKinley D. Permeability of canine cardiac sarcoplasmic reticulum vesicles to K+, Na+, H+, and Cl-. J Biol Chem. 1982 Jul 10;257(13):7704–7711. [PubMed] [Google Scholar]
  19. Nordlie R. C., Scott H. M., Waddell I. D., Hume R., Burchell A. Analysis of human hepatic microsomal glucose-6-phosphatase in clinical conditions where the T2 pyrophosphate/phosphate transport protein is absent. Biochem J. 1992 Feb 1;281(Pt 3):859–863. doi: 10.1042/bj2810859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schulze H. U., Nolte B., Kannler R. Evidence for changes in the conformational status of rat liver microsomal glucose-6-phosphate:phosphohydrolase during detergent-dependent membrane modification. Effect of p-mercuribenzoate and organomercurial agarose gel on glucose-6-phosphatase of native and detergent-modified microsomes. J Biol Chem. 1986 Dec 15;261(35):16571–16578. [PubMed] [Google Scholar]
  21. Singh J., Nordlie R. C., Jorgenson R. A. Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase. Biochim Biophys Acta. 1981 Dec 18;678(3):477–482. doi: 10.1016/0304-4165(81)90129-x. [DOI] [PubMed] [Google Scholar]
  22. Stetten M. R., Burnett F. F. Some properties of variously activated microsomal glucose-6-phosphatase, inorganic pyrophosphatase and inorganic pyrophosphate-glucose phosphotransferase. Shift in pH optimum. Biochim Biophys Acta. 1967 May 16;139(1):138–147. doi: 10.1016/0005-2744(67)90120-9. [DOI] [PubMed] [Google Scholar]
  23. Waddell I. D., Gibb L., Burchell A. Calcium activates glucose-6-phosphatase in intact rat hepatic microsomes. Biochem J. 1990 Apr 15;267(2):549–551. doi: 10.1042/bj2670549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Waddell I. D., Hume R., Burchell A. A direct method for the diagnosis of human hepatic type 1b and type 1c glycogen-storage disease. Clin Sci (Lond) 1989 Jun;76(6):573–579. doi: 10.1042/cs0760573. [DOI] [PubMed] [Google Scholar]
  25. Waddell I. D., Lindsay J. G., Burchell A. The identification of T2; the phosphate/pyrophosphate transport protein of the hepatic microsomal glucose-6-phosphatase system. FEBS Lett. 1988 Feb 29;229(1):179–182. doi: 10.1016/0014-5793(88)80822-6. [DOI] [PubMed] [Google Scholar]
  26. Waddell I. D., Scott H., Grant A., Burchell A. Identification and characterization of a hepatic microsomal glucose transport protein. T3 of the glucose-6-phosphatase system? Biochem J. 1991 Apr 15;275(Pt 2):363–367. doi: 10.1042/bj2750363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zoccoli M. A., Hoopes R. R., Karnovsky M. L. Rat liver microsomal glucose-6-P translocase. Effect of physiological status on inhibition and labeling by stilbene disulfonic acid derivatives. J Biol Chem. 1982 Oct 10;257(19):11296–11300. [PubMed] [Google Scholar]
  28. Zoccoli M. A., Karnovsky M. L. Effect of two inhibitors of anion transport on the hydrolysis of glucose 6-phosphate by rat liver microsomes. Covalent modification of the glucose 6-P transport component. J Biol Chem. 1980 Feb 10;255(3):1113–1119. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES