Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Sep 15;286(Pt 3):879–887. doi: 10.1042/bj2860879

The metabolism of tetradecylthiopropionic acid, a 4-thia stearic acid, in the rat. In vivo and in vitro studies.

E Hvattum 1, S Skrede 1, J Bremer 1, M Solbakken 1
PMCID: PMC1132986  PMID: 1417748

Abstract

The metabolism of [1-14C]tetradecylthiopropionic acid (TTP), a 4-thia stearic acid, and its sulphoxide, [1-14C]texadecylsulphoxypropionic acid (TTP-SO), has been studied in intact rats, in isolated rat hepatocytes, and in rat liver mitochondria. Two pathways of oxidation (beta-oxidation and omega-oxidation) have been demonstrated. TTP is incorporated, in vivo, into tissue triacylglycerol and phospholipids, it is oxidized to CO2, and it is excreted in urine, mainly as carboxypropylsulphoxypropionic acid and a little as carboxymethylsulphoxypropionic acid. TTP-SO is metabolized, in vivo, more rapidly to the same two omega-oxidation products. In hepatocytes TTP is incorporated into triacylglycerol and phospholipids even more rapidly than stearic acid. It is recovered mainly in the 1-position of phosphatidylcholine. Some is oxidized to CO2 and acid-soluble products. TTP-SO is mainly omega-oxidized to the same metabolites as are found in urine. A small fraction is incorporated into phospholipids or oxidized to CO2. In isolated mitochondria [1-14C]TTP is converted into 14CO2, radioactive malonic semialdehyde, and addition products of malonic semialdehyde. In the presence of phenylhydrazine, malonic semialdehyde phenylhydrazone is the dominating product. In soluble extracts of mitochondria [1-14C]malonic semialdehyde is oxidized directly to 14CO2 in the presence of CoA and NAD+, probably by the (methyl)malonic acid semialdehyde dehydrogenase (EC 1.2.1.27).

Full text

PDF
879

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarsland A., Aarsaether N., Bremer J., Berge R. K. Alkylthioacetic acids (3-thia fatty acids) as non-beta-oxidizable fatty acid analogues: a new group of hypolipidemic drugs. III. Dissociation of cholesterol- and triglyceride-lowering effects and the induction of peroxisomal beta-oxidation. J Lipid Res. 1989 Nov;30(11):1711–1718. [PubMed] [Google Scholar]
  2. Aarsland A., Berge R. K. Peroxisome proliferating sulphur- and oxy-substituted fatty acid analogues are activated to acyl coenzyme A thioesters. Biochem Pharmacol. 1991 Jan 1;41(1):53–61. doi: 10.1016/0006-2952(91)90010-3. [DOI] [PubMed] [Google Scholar]
  3. Ammon H. P., Estler C. J., Heim F. Inactivation of coenzyme a by ethanol. I. Acetaldehyde as mediator of the inactivation of coenzyme A following the administration of ethanol in vivo. Biochem Pharmacol. 1969 Jan;18(1):29–33. doi: 10.1016/0006-2952(69)90005-7. [DOI] [PubMed] [Google Scholar]
  4. Baqir Y. A., Booth R. A new method for assaying rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and its application in a study of the effect of dietary cholesterol on this effect of dietary cholesterol on this enzyme. Biochem J. 1977 Jun 15;164(3):501–508. doi: 10.1042/bj1640501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berge R. K., Aarsland A., Kryvi H., Bremer J., Aarsaether N. Alkylthio acetic acids (3-thia fatty acids)--a new group of non-beta-oxidizable peroxisome-inducing fatty acid analogues--II. Dose-response studies on hepatic peroxisomal- and mitochondrial changes and long-chain fatty acid metabolizing enzymes in rats. Biochem Pharmacol. 1989 Nov 15;38(22):3969–3979. doi: 10.1016/0006-2952(89)90676-x. [DOI] [PubMed] [Google Scholar]
  6. Berge R. K., Aarsland A., Kryvi H., Bremer J., Aarsaether N. Alkylthioacetic acid (3-thia fatty acids)--a new group of non-beta-oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver. Biochim Biophys Acta. 1989 Aug 22;1004(3):345–356. doi: 10.1016/0005-2760(89)90083-0. [DOI] [PubMed] [Google Scholar]
  7. Bergseth S., Bremer J. Alkylthioacetic acids (3-thia fatty acids) are metabolized and excreted as shortened dicarboxylic acids in vivo. Biochim Biophys Acta. 1990 May 22;1044(2):237–242. doi: 10.1016/0005-2760(90)90308-k. [DOI] [PubMed] [Google Scholar]
  8. Bergseth S., Christiansen E. N., Bremer J. The effect of feeding fish oils, vegetable oils and clofibrate on the ketogenesis from long chain fatty acids in hepatocytes. Lipids. 1986 Aug;21(8):508–514. doi: 10.1007/BF02535638. [DOI] [PubMed] [Google Scholar]
  9. Bergseth S., Hokland B. M., Bremer J. Metabolism of dicarboxylic acids in vivo and in the perfused kidney of the rat. Biochim Biophys Acta. 1988 Jul 1;961(1):103–109. doi: 10.1016/0005-2760(88)90135-x. [DOI] [PubMed] [Google Scholar]
  10. Corkey B. E., Brandt M., Williams R. J., Williamson J. R. Assay of short-chain acyl coenzyme A intermediates in tissue extracts by high-pressure liquid chromatography. Anal Biochem. 1981 Nov 15;118(1):30–41. doi: 10.1016/0003-2697(81)90152-4. [DOI] [PubMed] [Google Scholar]
  11. DeGrado T. R., Coenen H. H., Stocklin G. 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991 Oct;32(10):1888–1896. [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodwin G. W., Rougraff P. M., Davis E. J., Harris R. A. Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase. J Biol Chem. 1989 Sep 5;264(25):14965–14971. [PubMed] [Google Scholar]
  15. Griffith O. W. Beta-amino acids: mammalian metabolism and utility as alpha-amino acid analogues. Annu Rev Biochem. 1986;55:855–878. doi: 10.1146/annurev.bi.55.070186.004231. [DOI] [PubMed] [Google Scholar]
  16. Hovik R., Osmundsen H., Berge R., Aarsland A., Bergseth S., Bremer J. Effects of thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation. Studies in vivo and in vitro. Biochem J. 1990 Aug 15;270(1):167–173. doi: 10.1042/bj2700167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hvattum E., Bergseth S., Pedersen C. N., Bremer J., Aarsland A., Berge R. K. Microsomal oxidation of dodecylthioacetic acid (a 3-thia fatty acid) in rat liver. 1991 Mar 15-Apr 1Biochem Pharmacol. 41(6-7):945–953. doi: 10.1016/0006-2952(91)90200-o. [DOI] [PubMed] [Google Scholar]
  18. KUPIECKI F. P., COON M. J. The enzymatic synthesis of beta-aminoisobutyrate, a product of valine metabolism, and of beta-alanine, a product of beta-hydroxypropionate metabolism. J Biol Chem. 1957 Dec;229(2):743–754. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lau S. M., Brantley R. K., Thorpe C. 4-Thia-trans-2-alkenoyl-CoA derivatives: properties and enzymatic reactions. Biochemistry. 1989 Oct 3;28(20):8255–8262. doi: 10.1021/bi00446a043. [DOI] [PubMed] [Google Scholar]
  21. Lienhard G. E., Jencks W. P. Thiol addition to the carbonyl group. Equilibria and kinetics. J Am Chem Soc. 1966 Sep 5;88(17):3982–3994. doi: 10.1021/ja00969a017. [DOI] [PubMed] [Google Scholar]
  22. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PIHL A., FRITZSON P. The catabolism of C14-labeled beta-alanine in the intact rat. J Biol Chem. 1955 Jul;215(1):345–351. [PubMed] [Google Scholar]
  24. ROBERTS E., BREGOFF H. M. Transamination of gamma-aminobutyric acid and beta-alanine in brain and liver. J Biol Chem. 1953 Mar;201(1):393–398. [PubMed] [Google Scholar]
  25. Sabbagh E., Cuebas D., Schulz H. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria. J Biol Chem. 1985 Jun 25;260(12):7337–7342. [PubMed] [Google Scholar]
  26. Scholem R. D., Brown G. K. Metabolism of malonic semialdehyde in man. Biochem J. 1983 Oct 15;216(1):81–85. doi: 10.1042/bj2160081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seglen P. O. Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res. 1973 Dec;82(2):391–398. doi: 10.1016/0014-4827(73)90357-1. [DOI] [PubMed] [Google Scholar]
  28. Skrede S., Narce M., Bergseth S., Bremer J. The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes. Biochim Biophys Acta. 1989 Oct 17;1005(3):296–302. doi: 10.1016/0005-2760(89)90052-0. [DOI] [PubMed] [Google Scholar]
  29. Spydevold O., Bremer J. Induction of peroxisomal beta-oxidation in 7800 C1 Morris hepatoma cells in steady state by fatty acids and fatty acid analogues. Biochim Biophys Acta. 1989 May 15;1003(1):72–79. doi: 10.1016/0005-2760(89)90101-x. [DOI] [PubMed] [Google Scholar]
  30. Steele R. D., Benevenga N. J. Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism in vitro. J Biol Chem. 1978 Nov 10;253(21):7844–7850. [PubMed] [Google Scholar]
  31. VAGELOS P. R. Propionic acid metabolism. IV. Synthesis of malonyl coenzyme A. J Biol Chem. 1960 Feb;235:346–350. [PubMed] [Google Scholar]
  32. WOELLER F. H. Liquid scintillation counting of C-14-labelled CO2 with phenethylamine. Anal Biochem. 1961 Oct;2:508–511. doi: 10.1016/0003-2697(61)90056-2. [DOI] [PubMed] [Google Scholar]
  33. Wells M. A., Hanahan D. J. Studies on phospholipase A. I. Isolation and characterization of two enzymes from Crotalus adamanteus venom. Biochemistry. 1969 Jan;8(1):414–424. doi: 10.1021/bi00829a057. [DOI] [PubMed] [Google Scholar]
  34. Wilms J., Lub J., Wever R. Reactions of mercaptans with cytochrome c oxidase and cytochrome c. Biochim Biophys Acta. 1980 Feb 8;589(2):324–335. doi: 10.1016/0005-2728(80)90048-1. [DOI] [PubMed] [Google Scholar]
  35. YAMADA E. W., JAKOBY W. B. Aldehyde oxidation. V. Direct conversion of malonic semialdehyde to acetyl-coenzyme A. J Biol Chem. 1960 Mar;235:589–594. [PubMed] [Google Scholar]
  36. Yoshihara S., Tatsumi K. Metabolism of diphenyl sulfoxide in perfused guinea pig liver. Involvement of aldehyde oxidase as a sulfoxide reductase. Drug Metab Dispos. 1990 Nov-Dec;18(6):876–881. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES