Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 15;286(Pt 1):223–229. doi: 10.1042/bj2860223

Kinetic analysis of the type-1 proinsulin endopeptidase by a monoclonal antibody-based immunoadsorbent assay.

E M Bailyes 1, J C Hutton 1
PMCID: PMC1133043  PMID: 1520272

Abstract

A simple, rapid and sensitive assay for the type-1 endopeptidase (Arg-Arg cleaving) was developed by using an antiproinsulin monoclonal immunoadsorbent to separate reaction products from the substrate. The values obtained by this assay were identical with those obtained by an h.p.l.c.-based procedure and yielded similar values for the pH optimum (5.6) and Ca2+ activation (K0.5 = 2 mM). It was shown that the type-1 endopeptidase was readily solubilized by Triton X-114 (87 +/- 3%, n = 12) and partitioned principally into the aqueous phase at 30 degrees C (90.1 +/- 2.6%, n = 12). Activity was lost on gel filtration, but could be restored by adenosine 5'-[gamma-thio]triphosphate (K0.5 = 6 microM), 50 microM-dithiothreitol or 50 microM-Ca(2+)-trans-1,2-diaminocyclohexane-NNN'N'-tetra-acetic acid (CDTA), indicating that the enzyme was particularly sensitive to heavy metal ions. The Km obtained with proinsulin as substrate (13 +/- 1.7 microM) indicated that the enzyme works at close to its Vmax. in the nascent secretory granule. The Vmax. of the enzyme prepared from insulin granules (0.6% proinsulin converted/min) corresponded closely to the rate measured in vivo in rat islets. The type-1 endopeptidase also appears to be capable of binding to proinsulin in the region of the C-peptide/A-chain junction, since a peptide spanning this region was found to inhibit the 125I-proinsulin processing measured by this assay.

Full text

PDF
223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bresnahan P. A., Leduc R., Thomas L., Thorner J., Gibson H. L., Brake A. J., Barr P. J., Thomas G. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 1990 Dec;111(6 Pt 2):2851–2859. doi: 10.1083/jcb.111.6.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davidson H. W., Hutton J. C. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J. 1987 Jul 15;245(2):575–582. doi: 10.1042/bj2450575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davidson H. W., Peshavaria M., Hutton J. C. Proteolytic conversion of proinsulin into insulin. Identification of a Ca2+-dependent acidic endopeptidase in isolated insulin-secretory granules. Biochem J. 1987 Sep 1;246(2):279–286. doi: 10.1042/bj2460279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davidson H. W., Rhodes C. J., Hutton J. C. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Nature. 1988 May 5;333(6168):93–96. doi: 10.1038/333093a0. [DOI] [PubMed] [Google Scholar]
  5. Docherty K., Hutton J. C. Carboxypeptidase activity in the insulin secretory granule. FEBS Lett. 1983 Oct 3;162(1):137–141. doi: 10.1016/0014-5793(83)81065-5. [DOI] [PubMed] [Google Scholar]
  6. Docherty K., Rhodes C. J., Taylor N. A., Shennan K. I., Hutton J. C. Proinsulin endopeptidase substrate specificities defined by site-directed mutagenesis of proinsulin. J Biol Chem. 1989 Nov 5;264(31):18335–18339. [PubMed] [Google Scholar]
  7. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  8. Fuller R. S., Brake A., Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434–1438. doi: 10.1073/pnas.86.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Given B. D., Cohen R. M., Shoelson S. E., Frank B. H., Rubenstein A. H., Tager H. S. Biochemical and clinical implications of proinsulin conversion intermediates. J Clin Invest. 1985 Oct;76(4):1398–1405. doi: 10.1172/JCI112116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gluschankof P., Morel A., Benoit R., Cohen P. The somatostatin-28 convertase of rat brain cortex generates both somatostatin-14 and somatostatin-28. Biochem Biophys Res Commun. 1985 May 16;128(3):1051–1057. doi: 10.1016/0006-291x(85)91046-0. [DOI] [PubMed] [Google Scholar]
  11. Gluschankof P., Morel A., Gomez S., Nicolas P., Fahy C., Cohen P. Enzymes processing somatostatin precursors: an Arg-Lys esteropeptidase from the rat brain cortex converting somatostatin-28 into somatostatin-14. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6662–6666. doi: 10.1073/pnas.81.21.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guest P. C., Lowing C., Arden S. D., Gray I. P., Hutton J. C. A rapid, sensitive and versatile two-site immunoradiometric assay for insulin. Mol Cell Endocrinol. 1989 Dec;67(2-3):173–178. doi: 10.1016/0303-7207(89)90207-4. [DOI] [PubMed] [Google Scholar]
  13. Hosaka M., Nagahama M., Kim W. S., Watanabe T., Hatsuzawa K., Ikemizu J., Murakami K., Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem. 1991 Jul 5;266(19):12127–12130. [PubMed] [Google Scholar]
  14. Hutton J. C., Penn E. J., Peshavaria M. Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia. 1982 Oct;23(4):365–373. doi: 10.1007/BF00253746. [DOI] [PubMed] [Google Scholar]
  15. Hutton J. C. Subtilisin-like proteinases involved in the activation of proproteins of the eukaryotic secretory pathway. Curr Opin Cell Biol. 1990 Dec;2(6):1131–1142. doi: 10.1016/0955-0674(90)90167-d. [DOI] [PubMed] [Google Scholar]
  16. Korner J., Chun J., Harter D., Axel R. Isolation and functional expression of a mammalian prohormone processing enzyme, murine prohormone convertase 1. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6834–6838. doi: 10.1073/pnas.88.15.6834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Loh Y. P., Parish D. C., Tuteja R. Purification and characterization of a paired basic residue-specific pro-opiomelanocortin converting enzyme from bovine pituitary intermediate lobe secretory vesicles. J Biol Chem. 1985 Jun 25;260(12):7194–7205. [PubMed] [Google Scholar]
  19. Plevrakis I., Clamagirand C., Créminon C., Brakch N., Rholam M., Cohen P. Proocytocin/neurophysin convertase from bovine neurohypophysis and corpus luteum secretory granules: complete purification, structure-function relationships, and competitive inhibitor. Biochemistry. 1989 Mar 21;28(6):2705–2710. doi: 10.1021/bi00432a051. [DOI] [PubMed] [Google Scholar]
  20. Rhodes C. J., Zumbrunn A., Bailyes E. M., Shaw E., Hutton J. C. The inhibition of proinsulin-processing endopeptidase activities by active-site-directed peptides. Biochem J. 1989 Feb 15;258(1):305–308. doi: 10.1042/bj2580305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seidah N. G., Gaspar L., Mion P., Marcinkiewicz M., Mbikay M., Chrétien M. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 1990 Jul-Aug;9(6):415–424. doi: 10.1089/dna.1990.9.415. [DOI] [PubMed] [Google Scholar]
  22. Shennan K. I., Smeekens S. P., Steiner D. F., Docherty K. Characterization of PC2, a mammalian Kex2 homologue, following expression of the cDNA in microinjected Xenopus oocytes. FEBS Lett. 1991 Jun 24;284(2):277–280. doi: 10.1016/0014-5793(91)80703-6. [DOI] [PubMed] [Google Scholar]
  23. Smeekens S. P., Avruch A. S., LaMendola J., Chan S. J., Steiner D. F. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):340–344. doi: 10.1073/pnas.88.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smeekens S. P., Steiner D. F. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem. 1990 Feb 25;265(6):2997–3000. [PubMed] [Google Scholar]
  25. Sobey W. J., Beer S. F., Carrington C. A., Clark P. M., Frank B. H., Gray I. P., Luzio S. D., Owens D. R., Schneider A. E., Siddle K. Sensitive and specific two-site immunoradiometric assays for human insulin, proinsulin, 65-66 split and 32-33 split proinsulins. Biochem J. 1989 Jun 1;260(2):535–541. doi: 10.1042/bj2600535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sossin W. S., Fisher J. M., Scheller R. H. Cellular and molecular biology of neuropeptide processing and packaging. Neuron. 1989 May;2(5):1407–1417. doi: 10.1016/0896-6273(89)90186-4. [DOI] [PubMed] [Google Scholar]
  27. Steiner D. F., Michael J., Houghten R., Mathieu M., Gardner P. R., Ravazzola M., Orci L. Use of a synthetic peptide antigen to generate antisera reactive with a proteolytic processing site in native human proinsulin: demonstration of cleavage within clathrin-coated (pro)secretory vesicles. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6184–6188. doi: 10.1073/pnas.84.17.6184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Storer A. C., Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1–5. doi: 10.1042/bj1590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stournaras C., Merkler I., Faulstich H. Thiol group reactivity and polymerization of actin in the presence of ATP analogs. Biochem Biophys Res Commun. 1988 Sep 15;155(2):962–970. doi: 10.1016/s0006-291x(88)80590-4. [DOI] [PubMed] [Google Scholar]
  30. Thomas L., Leduc R., Thorne B. A., Smeekens S. P., Steiner D. F., Thomas G. Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5297–5301. doi: 10.1073/pnas.88.12.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thorne B. A., Thomas G. An in vivo characterization of the cleavage site specificity of the insulin cell prohormone processing enzymes. J Biol Chem. 1990 May 25;265(15):8436–8443. [PubMed] [Google Scholar]
  32. van de Ven W. J., Voorberg J., Fontijn R., Pannekoek H., van den Ouweland A. M., van Duijnhoven H. L., Roebroek A. J., Siezen R. J. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol Biol Rep. 1990 Nov;14(4):265–275. doi: 10.1007/BF00429896. [DOI] [PubMed] [Google Scholar]
  33. van den Ouweland A. M., van Duijnhoven H. L., Keizer G. D., Dorssers L. C., Van de Ven W. J. Structural homology between the human fur gene product and the subtilisin-like protease encoded by yeast KEX2. Nucleic Acids Res. 1990 Feb 11;18(3):664–664. doi: 10.1093/nar/18.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES