Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 15;286(Pt 1):257–262. doi: 10.1042/bj2860257

Regulation of glutathione metabolism in Ehrlich ascites tumour cells.

J M Estrela 1, R Hernandez 1, P Terradez 1, M Asensi 1, I R Puertes 1, J Viña 1
PMCID: PMC1133048  PMID: 1520278

Abstract

Glutathione metabolism was studied in cancer cells during the growth of an Ehrlich ascites tumour. GSH, but not GSSG, content decreases when cell proliferation and the rate of protein synthesis in the tumour decrease. This change correlates with a decrease in the rate of GSH synthesis and an increase in glutathione peroxidase and glutathione S-transferase activities. Glutathione efflux from tumour cells seems to co-ordinate with the rate of GSH synthesis. Cysteine, and not methionine, promotes GSH synthesis in tumour cells. However, changes in the rate of GSH synthesis are not due to limitations in the supply of blood cysteine or to changes in the intracellular amino acid pool of the cancer cells. Our data suggest that changes in protein metabolism accompanying tumour growth in vivo can modulate glutathione content in cancer cells.

Full text

PDF
257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
  2. Arrick B. A., Nathan C. F. Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 1984 Oct;44(10):4224–4232. [PubMed] [Google Scholar]
  3. Aw T. Y., Ookhtens M., Kaplowitz N. Inhibition of glutathione efflux from isolated rat hepatocytes by methionine. J Biol Chem. 1984 Aug 10;259(15):9355–9358. [PubMed] [Google Scholar]
  4. Charters Y., Grimble R. F. Effect of recombinant human tumour necrosis factor alpha on protein synthesis in liver, skeletal muscle and skin of rats. Biochem J. 1989 Mar 1;258(2):493–497. doi: 10.1042/bj2580493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cho Y., Bannai S. Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem. 1990 Dec;55(6):2091–2097. doi: 10.1111/j.1471-4159.1990.tb05800.x. [DOI] [PubMed] [Google Scholar]
  6. Djurhuus R., Svardal A. M., Mansoor M. A., Ueland P. M. Modulation of glutathione content and the effect on methionine auxotrophy and cellular distribution of homocysteine and cysteine in mouse cell lines. Carcinogenesis. 1991 Feb;12(2):241–247. doi: 10.1093/carcin/12.2.241. [DOI] [PubMed] [Google Scholar]
  7. Duthie S. J., Coleman C. S., Grant M. H. Status of reduced glutathione in the human hepatoma cell line, HEP G2. Biochem Pharmacol. 1988 Sep 1;37(17):3365–3368. doi: 10.1016/0006-2952(88)90653-3. [DOI] [PubMed] [Google Scholar]
  8. Estrela J. M., Gil F., Vila J. M., Viña J. Alpha-adrenergic modulation of glutathione metabolism in isolated rat hepatocytes. Am J Physiol. 1988 Dec;255(6 Pt 1):E801–E805. doi: 10.1152/ajpendo.1988.255.6.E801. [DOI] [PubMed] [Google Scholar]
  9. Fariss M. W., Reed D. J. High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 1987;143:101–109. doi: 10.1016/0076-6879(87)43018-8. [DOI] [PubMed] [Google Scholar]
  10. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  11. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glode L. M., Kriegler M. P., Livingston D. M. Cysteine auxotrophy of human leukemic lymphoblasts is associated with decreased amounts of intracellular cystathionase protein. Biochemistry. 1981 Mar 3;20(5):1306–1311. doi: 10.1021/bi00508a041. [DOI] [PubMed] [Google Scholar]
  13. Gold J. Cancer cachexia and gluconeogenesis. Ann N Y Acad Sci. 1974;230:103–110. doi: 10.1111/j.1749-6632.1974.tb14440.x. [DOI] [PubMed] [Google Scholar]
  14. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  15. Hoffman R. M. Altered methionine metabolism and transmethylation in cancer. Anticancer Res. 1985 Jan-Feb;5(1):1–30. [PubMed] [Google Scholar]
  16. Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
  17. Lopes M. N., Black P., Ashford A. J., Pain V. M. Protein metabolism in the tumour-bearing mouse. Rates of protein synthesis in host tissues and in an Ehrlich ascites tumour at different stages in tumour growth. Biochem J. 1989 Dec 15;264(3):713–719. doi: 10.1042/bj2640713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. doi: 10.1126/science.6836290. [DOI] [PubMed] [Google Scholar]
  19. Mitchell J. B., Cook J. A., DeGraff W., Glatstein E., Russo A. Glutathione modulation in cancer treatment: will it work? Int J Radiat Oncol Biol Phys. 1989 May;16(5):1289–1295. doi: 10.1016/0360-3016(89)90301-5. [DOI] [PubMed] [Google Scholar]
  20. Mitchell J. B., Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer Suppl. 1987 Jun;8:96–104. [PMC free article] [PubMed] [Google Scholar]
  21. Moreadith R. W., Lehninger A. L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984 May 25;259(10):6215–6221. [PubMed] [Google Scholar]
  22. Oliff A. The role of tumor necrosis factor (cachectin) in cachexia. Cell. 1988 Jul 15;54(2):141–142. doi: 10.1016/0092-8674(88)90543-0. [DOI] [PubMed] [Google Scholar]
  23. Reed D. J., Orrenius S. The role of methionine in glutathione biosynthesis by isolated hepatocytes. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1257–1264. doi: 10.1016/s0006-291x(77)80115-0. [DOI] [PubMed] [Google Scholar]
  24. Rennie M. J., Edwards R. H., Emery P. W., Halliday D., Lundholm K., Millward D. J. Depressed protein synthesis is the dominant characteristic of muscle wasting and cachexia. Clin Physiol. 1983 Oct;3(5):387–398. doi: 10.1111/j.1475-097x.1983.tb00847.x. [DOI] [PubMed] [Google Scholar]
  25. Roncero C., Estrela J. M., Benito M. Adenine nucleotide compartmentation in foetal rat hepatocytes. Effects of atractyloside, oligomycin, calcium ionophore and adrenergic agonists. FEBS Lett. 1986 Nov 10;208(1):105–108. doi: 10.1016/0014-5793(86)81541-1. [DOI] [PubMed] [Google Scholar]
  26. Saez G., Thornalley P. J., Hill H. A., Hems R., Bannister J. V. The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim Biophys Acta. 1982 Oct 28;719(1):24–31. doi: 10.1016/0304-4165(82)90302-6. [DOI] [PubMed] [Google Scholar]
  27. Shaw J. P., Chou I. N. Elevation of intracellular glutathione content associated with mitogenic stimulation of quiescent fibroblasts. J Cell Physiol. 1986 Nov;129(2):193–198. doi: 10.1002/jcp.1041290210. [DOI] [PubMed] [Google Scholar]
  28. Sturman J. A., Gaull G., Raiha N. C. Absence of cystathionase in human fetal liver: is cystine essential? Science. 1970 Jul 3;169(3940):74–76. doi: 10.1126/science.169.3940.74. [DOI] [PubMed] [Google Scholar]
  29. Suthanthiran M., Anderson M. E., Sharma V. K., Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A. 1990 May;87(9):3343–3347. doi: 10.1073/pnas.87.9.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tate S. S., Meister A. Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of gamma-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3329–3333. doi: 10.1073/pnas.71.9.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tateishi N., Higashi T., Shinya S., Naruse A., Sakamoto Y. Studies on the regulation of glutathione level in rat liver. J Biochem. 1974 Jan;75(1):93–103. doi: 10.1093/oxfordjournals.jbchem.a130387. [DOI] [PubMed] [Google Scholar]
  32. Tisdale M. J. Cancer cachexia. Br J Cancer. 1991 Mar;63(3):337–342. doi: 10.1038/bjc.1991.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Viña J., Hems R., Krebs H. A. Maintenance of glutathione content is isolated hepatocyctes. Biochem J. 1978 Mar 15;170(3):627–630. doi: 10.1042/bj1700627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Viña J., Puertes I. R., Estrela J. M., Viña J. R., Galbis J. L. Involvement of gamma-glutamyltransferase in amino-acid uptake by the lactating mammary gland of the rat. Biochem J. 1981 Jan 15;194(1):99–102. doi: 10.1042/bj1940099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Viña J., Saez G. T., Wiggins D., Roberts A. F., Hems R., Krebs H. A. The effect of cysteine oxidation on isolated hepatocytes. Biochem J. 1983 Apr 15;212(1):39–44. doi: 10.1042/bj2120039. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES