Abstract
The effects of inhibition of the capacity to form spermidine and spermine on cell growth were investigated using murine leukaemia L1210 cells and 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine (MDL 73811, AbeAdo), an enzyme-activated irreversible inhibitor of S-adenosyl-L-methionine decarboxylase. Putrescine levels were increased 80-fold, and spermidine and spermine levels were greatly reduced after a 3-day exposure to a maximally inhibitory dose of 10 microM-AbeAdo. Addition of AbeAdo to the culture medium inhibited the growth of L1210 cells measured 3 days later in a dose-dependent manner, but, even at a dose of 10 microM, which was maximally effective, exposure to AbeAdo was not immediately cytostatic. However, the growth rate of L1210 cells chronically exposed to 10 microM-AbeAdo declined steadily until day 12, when the cells stopped growing. L1210 cells exposed to AbeAdo for 12 days could not be rescued from cytostasis by removal of the drug from the culture, but could be rescued by exposure to exogenous spermidine or spermine, indicating that the growth-inhibitory effects of AbeAdo were a result of spermidine and/or spermine depletion. It is suggested that elevated intracellular putrescine in AbeAdo-treated cells sustained limited growth in the absence of physiological levels of spermidine and spermine until certain critical and specific physiological role(s) fulfilled by spermidine (and/or spermine) became deficient resulting in cytostasis. N-(3-Aminopropyl)-1,4-diamino-cis-but-2-ene, a spermidine analogue that is a substrate for deoxyhypusine synthase, was able to mimic the effects of spermidine in reversing AbeAdo-induced cytostasis. Spermidine analogues such as 5,5-dimethylspermidine, which are not substrates for deoxyhypusine synthase, were not active in this way. These results provide evidence that the formation of hypusine in the protein-synthesis initiation factor eIF-5A may be a critical role of spermidine essential for cell growth.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbruzzese A., Park M. H., Folk J. E. Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization. J Biol Chem. 1986 Mar 5;261(7):3085–3089. [PubMed] [Google Scholar]
- Bey P., Bolkenius F. N., Seiler N., Casara P. N-2,3-Butadienyl-1,4-butanediamine derivatives: potent irreversible inactivators of mammalian polyamine oxidase. J Med Chem. 1985 Jan;28(1):1–2. doi: 10.1021/jm00379a001. [DOI] [PubMed] [Google Scholar]
- Bitonti A. J., Bacchi C. J., McCann P. P., Sjoerdsma A. Catalytic irreversible inhibition of Trypanosoma brucei brucei ornithine decarboxylase by substrate and product analogs and their effects on murine trypanosomiasis. Biochem Pharmacol. 1985 May 15;34(10):1773–1777. doi: 10.1016/0006-2952(85)90648-3. [DOI] [PubMed] [Google Scholar]
- Bitonti A. J., Byers T. L., Bush T. L., Casara P. J., Bacchi C. J., Clarkson A. B., Jr, McCann P. P., Sjoerdsma A. Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob Agents Chemother. 1990 Aug;34(8):1485–1490. doi: 10.1128/aac.34.8.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers T. L., Bush T. L., McCann P. P., Bitonti A. J. Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-L-methionine. Biochem J. 1991 Mar 1;274(Pt 2):527–533. doi: 10.1042/bj2740527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers T. L., Pegg A. E. Properties and physiological function of the polyamine transport system. Am J Physiol. 1989 Sep;257(3 Pt 1):C545–C553. doi: 10.1152/ajpcell.1989.257.3.C545. [DOI] [PubMed] [Google Scholar]
- Casero R. A., Jr, Ervin S. J., Celano P., Baylin S. B., Bergeron R. J. Differential response to treatment with the bis(ethyl)polyamine analogues between human small cell lung carcinoma and undifferentiated large cell lung carcinoma in culture. Cancer Res. 1989 Feb 1;49(3):639–643. [PubMed] [Google Scholar]
- Danzin C., Marchal P., Casara P. Irreversible inhibition of rat S-adenosylmethionine decarboxylase by 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine. Biochem Pharmacol. 1990 Oct 1;40(7):1499–1503. doi: 10.1016/0006-2952(90)90446-r. [DOI] [PubMed] [Google Scholar]
- Hershey J. W., Smit-McBride Z., Schnier J. The role of mammalian initiation factor eIF-4D and its hypusine modification in translation. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):160–162. doi: 10.1016/0167-4781(90)90159-y. [DOI] [PubMed] [Google Scholar]
- Hibasami H., Kawase M., Tsukada T., Maekawa S., Sakurai M., Nakashima K. 2-Mercaptoethylamine, a competitive inhibitor of spermidine synthase in mammalian cells. FEBS Lett. 1988 Mar 14;229(2):243–246. doi: 10.1016/0014-5793(88)81133-5. [DOI] [PubMed] [Google Scholar]
- Hibasami H., Sakurai M., Maekawa S., Nakashima K. Methylthiopropylamine, a potent inhibitor of spermidine synthase and its antiproliferative effect on human lymphoid leukemia Molt 4B cells. Anticancer Res. 1987 Nov-Dec;7(6):1213–1216. [PubMed] [Google Scholar]
- Ito H., Hibasami H., Shimura K., Nagai J., Hidaka H. Antitumor effect of dicyclohexylammonium sulfate, a potent inhibitor of spermidine synthase against P388 leukemia. Cancer Lett. 1982 Mar-Apr;15(3):229–235. doi: 10.1016/0304-3835(82)90123-9. [DOI] [PubMed] [Google Scholar]
- Kolb M., Danzin C., Barth J., Claverie N. Synthesis and biochemical properties of chemically stable product analogues of the reaction catalyzed by S-adenosyl-L-methionine decarboxylase. J Med Chem. 1982 May;25(5):550–556. doi: 10.1021/jm00347a014. [DOI] [PubMed] [Google Scholar]
- Kramer D. L., Khomutov R. M., Bukin Y. V., Khomutov A. R., Porter C. W. Cellular characterization of a new irreversible inhibitor of S-adenosylmethionine decarboxylase and its use in determining the relative abilities of individual polyamines to sustain growth and viability of L1210 cells. Biochem J. 1989 Apr 15;259(2):325–331. doi: 10.1042/bj2590325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mamont P. S., Duchesne M. C., Grove J., Bey P. Anti-proliferative properties of DL-alpha-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. Biochem Biophys Res Commun. 1978 Mar 15;81(1):58–66. doi: 10.1016/0006-291x(78)91630-3. [DOI] [PubMed] [Google Scholar]
- Nagarajan S., Ganem B., Pegg A. E. Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J. 1988 Sep 1;254(2):373–378. doi: 10.1042/bj2540373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakashima K., Tsukada T., Hibasami H., Maekawa S. Synthesis of N-chlorosulfonyl dicyclohexylamine as a potent inhibitor for spermidine synthase and its effects on human leukemia Molt4B cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):718–722. doi: 10.1016/s0006-291x(86)80231-5. [DOI] [PubMed] [Google Scholar]
- Park M. H. The essential role of hypusine in eukaryotic translation initiation factor 4D (eIF-4D). Purification of eIF-4D and its precursors and comparison of their activities. J Biol Chem. 1989 Nov 5;264(31):18531–18535. [PubMed] [Google Scholar]
- Park M. H., Wolff E. C. Cell-free synthesis of deoxyhypusine. Separation of protein substrate and enzyme and identification of 1,3-diaminopropane as a product of spermidine cleavage. J Biol Chem. 1988 Oct 25;263(30):15264–15269. [PubMed] [Google Scholar]
- Park M. H., Wolff E. C., Smit-McBride Z., Hershey J. W., Folk J. E. Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine. J Biol Chem. 1991 May 5;266(13):7988–7994. [PubMed] [Google Scholar]
- Pegg A. E., Coward J. K. Growth of mammalian cells in the absence of the accumulation of spermine. Biochem Biophys Res Commun. 1985 Nov 27;133(1):82–89. doi: 10.1016/0006-291x(85)91844-3. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Inhibitors of S-adenosylmethionine decarboxylase. Methods Enzymol. 1983;94:239–247. doi: 10.1016/s0076-6879(83)94042-9. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Jones D. B., Secrist J. A., 3rd Effect of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells. Biochemistry. 1988 Mar 8;27(5):1408–1415. doi: 10.1021/bi00405a003. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Nagarajan S., Naficy S., Ganem B. Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells. Biochem J. 1991 Feb 15;274(Pt 1):167–171. doi: 10.1042/bj2740167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
- Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegg A. E. S-adenosylmethionine decarboxylase: a brief review. Cell Biochem Funct. 1984 Jan;2(1):11–15. doi: 10.1002/cbf.290020105. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Tang K. C., Coward J. K. Effects of S-adenosyl-1,8-diamino-3-thiooctane on polyamine metabolism. Biochemistry. 1982 Sep 28;21(20):5082–5089. doi: 10.1021/bi00263a036. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Biochem J. 1984 Nov 15;224(1):29–38. doi: 10.1042/bj2240029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohjanpelto P., Hölttä E., Jänne O. A. Mutant strain of Chinese hamster ovary cells with no detectable ornithine decarboxylase activity. Mol Cell Biol. 1985 Jun;5(6):1385–1390. doi: 10.1128/mcb.5.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter C. W., Sufrin J. R. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986 Jul-Aug;6(4):525–542. [PubMed] [Google Scholar]
- Schnier J., Schwelberger H. G., Smit-McBride Z., Kang H. A., Hershey J. W. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jun;11(6):3105–3114. doi: 10.1128/mcb.11.6.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjoerdsma A., Schechter P. J. Chemotherapeutic implications of polyamine biosynthesis inhibition. Clin Pharmacol Ther. 1984 Mar;35(3):287–300. doi: 10.1038/clpt.1984.33. [DOI] [PubMed] [Google Scholar]
- Smit-McBride Z., Dever T. E., Hershey J. W., Merrick W. C. Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J Biol Chem. 1989 Jan 25;264(3):1578–1583. [PubMed] [Google Scholar]
- Steglich C., Scheffler I. E. An ornithine decarboxylase-deficient mutant of Chinese hamster ovary cells. J Biol Chem. 1982 Apr 25;257(8):4603–4609. [PubMed] [Google Scholar]
- Wolff E. C., Park M. H., Folk J. E. Cleavage of spermidine as the first step in deoxyhypusine synthesis. The role of NAD. J Biol Chem. 1990 Mar 25;265(9):4793–4799. [PubMed] [Google Scholar]
