Abstract
Measurement of the decrease in pH that accompanies the addition of Zn2+ to heparin in solution provided an indirect method of examining cation-polyanion interaction. Construction of plots analogous to isothermal saturation binding plots revealed the existence, for defined conditions of interaction, of a [heparin]-independent direct proportionality between the fraction of the maximal pH change occurring and the [Zn2+]/[heparin disaccharide] ratio. This accords with results from polarimetric examination of Ca(2+)- and Cu(2+)-heparin interactions. It suggests that, under the conditions used, cation-heparin interaction may result in the formation of a complex that exists in a colloid-like phase, between which and the aqueous phase, exchange of cations does not follow simple solution-phase reversible equilibrium thermodynamic behaviour. The results suggest that the putative Zn(2+)-containing complex is less stable in the presence of NaCl than is the corresponding Ca(2+)-containing complex. Addition of Zn2+ to low concentrations of heparins is accompanied by the usual decrease in pH, followed by a removal of H+ from solution as the [Zn2+]/[heparin disaccharide] ratio increases, suggesting dissolution of the putative complex. This reversal of the initial pH change was not seen for most other cation-heparin interactions under the conditions studied.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berg J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990 Apr 25;265(12):6513–6516. [PubMed] [Google Scholar]
- Gallagher J. T., Walker A. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem J. 1985 Sep 15;230(3):665–674. doi: 10.1042/bj2300665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gervin C. A., Gervin A. S., Nichols W., Corrigan J. J., Jr Problems in the measurement of zinc using heparin as an anticoagulant. Life Sci. 1983 Dec 26;33(26):2643–2649. doi: 10.1016/0024-3205(83)90348-x. [DOI] [PubMed] [Google Scholar]
- Grant D., Long W. F., Moffat C. F., Williamson F. B. A study of Ca(2+)-heparin complex-formation by polarimetry. Biochem J. 1992 Mar 1;282(Pt 2):601–604. doi: 10.1042/bj2820601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant D., Long W. F., Moffat C. F., Williamson F. B. Cu(2+)-heparin interaction studied by polarimetry. Biochem J. 1992 Apr 1;283(Pt 1):243–246. doi: 10.1042/bj2830243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant D., Long W. F., Williamson F. B. Infrared spectroscopy of heparin-cation complexes. Biochem J. 1987 May 15;244(1):143–149. doi: 10.1042/bj2440143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Györkey F., Sato C. S. In vitro 65Zn-binding capacities of normal, hyperplastic, and carcinomatous human prostate gland. Exp Mol Pathol. 1968 Apr;8(2):216–224. doi: 10.1016/0014-4800(68)90017-8. [DOI] [PubMed] [Google Scholar]
- Kojima S., Hama Y., Sasaki T., Kubodera A. Elevated uptake of 67Ga and increased heparan sulfate content in liver-damaged rats. Eur J Nucl Med. 1983;8(2):52–59. doi: 10.1007/BF00252556. [DOI] [PubMed] [Google Scholar]
- Kojima S., Sasaki T., Kubodera A. Relation between 67Ga uptake and iron metabolism in rat tissues. Eur J Nucl Med. 1984;9(1):33–38. doi: 10.1007/BF00254347. [DOI] [PubMed] [Google Scholar]
- Mattai J., Kwak J. C. Quantitative similarity of zinc and calcium binding to heparin in excess salt solution. Biophys Chem. 1988 Sep;31(3):295–299. doi: 10.1016/0301-4622(88)80035-8. [DOI] [PubMed] [Google Scholar]
- Parrish R. F., Fair W. R. Selective binding of zinc ions to heparin rather than to other glycosaminoglycans. Biochem J. 1981 Feb 1;193(2):407–410. doi: 10.1042/bj1930407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes R., Magdaleno V. M., Hernández O., Rosado A., Delgado N. M. Effect of zinc on decondensation of human spermatozoa nuclei by heparin. Arch Androl. 1983 May;10(2):155–160. doi: 10.3109/01485018308987557. [DOI] [PubMed] [Google Scholar]
- Sato C. S., Gyorkey F. Zinc binding by glycosaminoglycans. J Biochem. 1976 Oct;80(4):883–886. doi: 10.1093/oxfordjournals.jbchem.a131351. [DOI] [PubMed] [Google Scholar]
- Sato C. S., Györkey F. Further observations on the in vitro 65Zn-binding sites of human prostatic tissues. Cancer Res. 1969 Feb;29(2):399–402. [PubMed] [Google Scholar]
- Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., Schaller J. G., Talal N., Winchester R. J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271–1277. doi: 10.1002/art.1780251101. [DOI] [PubMed] [Google Scholar]
- Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
- Whitfield D. M., Sarkar B. Metal binding to heparin monosaccharides: D-glucosamine-6-sulphate, D-glucuronic acid, and L-iduronic acid. J Inorg Biochem. 1991 Feb 15;41(3):157–170. doi: 10.1016/0162-0134(91)80009-7. [DOI] [PubMed] [Google Scholar]
- Woodhead N. E., Long W. F., Williamson F. B. Binding of zinc ions to heparin. Analysis by equilibrium dialysis suggests the occurrence of two, entropy-driven, processes. Biochem J. 1986 Jul 1;237(1):281–284. doi: 10.1042/bj2370281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu V. Y., Cohen M. P. A competitive binding assay for measurement of heparan sulfate in tissue digests. Anal Biochem. 1984 May 15;139(1):218–223. doi: 10.1016/0003-2697(84)90408-1. [DOI] [PubMed] [Google Scholar]