Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Nov 1;287(Pt 3):881–889. doi: 10.1042/bj2870881

Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain.

M Patel 1, I S Kayani 1, W Templeton 1, G W Mellor 1, E W Thomas 1, K Brocklehurst 1
PMCID: PMC1133089  PMID: 1445247

Abstract

1. 2-(N'-Acetyl-D-phenylalanyl)hydroxyethyl 2'-pyridyl disulphide (compound IV) (m.p. 59 degrees C; [alpha]D20 -6.6 degrees (c 1.2 in methanol)) was synthesized. 2. The results of a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group (Cys-25) of papain (EC 3.4.22.2) together with analogous kinetic data for the reactions of related time-dependent inhibitors, notably the L-enantiomer of compound (IV) (compound III) and the L- and D-enantiomers of 2-(N'-acetylphenylalanylamino)ethyl 2'-pyridyl disulphide (compounds I and II respectively), were used to assess the contributions of the (P1)-NH ... O = C < (Asp-158) and (P2) > C = O ... H-N-(Gly-66) hydrogen bonds and enantiomeric P2-S2 hydrophobic contacts in two manifestations of dynamic molecular recognition in papain-ligand association: (a) signalling to the catalytic-site region to provide for a (His-159)-IM(+)-H-assisted transition state and (b) the dependence of P2-S2 stereoselectivity on hydrogen-bonding interactions outside the S2 subsite. The analysis involved determination of the reactivities of individual ionization states of the reactions (pH-independent rate constants, k) and associated macroscopic pKa values and difference kinetic specificity energies (delta delta GKS = -RT1n(k1/k2), where k1 is the pH-independent second-order rate constant for reaction with one inhibitor and k2 is the analogous rate constant in the same ionization state for reaction with another inhibitor so that, when the structural change provides that k2 > k1, delta delta GKS is positive. 3. The kinetic data further illuminate the nature of the interdependence of binding interactions in papain first noted by Kowlessur, Topham, Thomas, O'Driscoll, Templeton & Brocklehurst [(1989) Biochem. J. 258, 755-764] in the S2 subsite, S1-S2 intersubsite and catalytic-site regions. Of particular note is the apparent dependence of the binding of the N-Ac-D-Phe moiety on the binding of the leaving group to (His-159)-Im+H and the fact that the resulting rate enhancement is more effective when (P1)-N-H is absent than when it is present. This result revealed by kinetic analysis goes beyond the conclusion suggested by model building that it is possible to make all of the binding contacts in complexes involving the D-enantiomers [(II) and (IV)] as in those involving the L-enantiomers [(I) and (III)].(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
881

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asbóth B., Majer Z., Polgár L. Cysteine proteases: the S2P2 hydrogen bond is more important for catalysis than is the analogous S1P1 bond. FEBS Lett. 1988 Jun 20;233(2):339–341. doi: 10.1016/0014-5793(88)80455-1. [DOI] [PubMed] [Google Scholar]
  2. Baines B. S., Brocklehurst K. A spectrophotometric method for the detection of contaminant chymopapains in preparations of papain. Selective modification of one type of thiol group in the chymopapains by a two-protonic-state reagent. Biochem J. 1978 Jul 1;173(1):345–347. doi: 10.1042/bj1730345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berti P. J., Faerman C. H., Storer A. C. Cooperativity of papain-substrate interaction energies in the S2 to S2' subsites. Biochemistry. 1991 Feb 5;30(5):1394–1402. doi: 10.1021/bi00219a033. [DOI] [PubMed] [Google Scholar]
  4. Björk I., Ylinenjärvi K. Interaction between chicken cystatin and the cysteine proteinases actinidin, chymopapain A, and ficin. Biochemistry. 1990 Feb 20;29(7):1770–1776. doi: 10.1021/bi00459a016. [DOI] [PubMed] [Google Scholar]
  5. Brocklehurst K., Brocklehurst S. M., Kowlessur D., O'Driscoll M., Patel G., Salih E., Templeton W., Thomas E., Topham C. M., Willenbrock F. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics. Biochem J. 1988 Dec 1;256(2):543–558. doi: 10.1042/bj2560543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brocklehurst K., Kowlessur D., O'Driscoll M., Patel G., Quenby S., Salih E., Templeton W., Thomas E. W., Willenbrock F. Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Biochem J. 1987 May 15;244(1):173–181. doi: 10.1042/bj2440173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brocklehurst K., Kowlessur D., Patel G., Templeton W., Quigley K., Thomas E. W., Wharton C. W., Willenbrock F., Szawelski R. J. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Biochem J. 1988 Mar 15;250(3):761–772. doi: 10.1042/bj2500761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brocklehurst S. M., Topham C. M., Brocklehurst K. A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans. 1990 Aug;18(4):598–600. doi: 10.1042/bst0180598. [DOI] [PubMed] [Google Scholar]
  9. Drenth J., Kalk K. H., Swen H. M. Binding of chloromethyl ketone substrate analogues to crystalline papain. Biochemistry. 1976 Aug 24;15(17):3731–3738. doi: 10.1021/bi00662a014. [DOI] [PubMed] [Google Scholar]
  10. Fersht A. R. Relationships between apparent binding energies measured in site-directed mutagenesis experiments and energetics of binding and catalysis. Biochemistry. 1988 Mar 8;27(5):1577–1580. doi: 10.1021/bi00405a027. [DOI] [PubMed] [Google Scholar]
  11. Hanzlik R. P., Jacober S. P., Zygmunt J. Reversible binding of peptide aldehydes to papain. Structure-activity relationships. Biochim Biophys Acta. 1991 Jan 23;1073(1):33–42. doi: 10.1016/0304-4165(91)90179-k. [DOI] [PubMed] [Google Scholar]
  12. Harris G. W., Pickersgill R. W., Howlin B., Moss D. S. The segmented anisotropic refinement of monoclinic papain by the application of the rigid-body TLS model and comparison to bovine ribonuclease A. Acta Crystallogr B. 1992 Feb 1;48(Pt 1):67–75. doi: 10.1107/s0108768191006663. [DOI] [PubMed] [Google Scholar]
  13. Khouri H. E., Vernet T., Ménard R., Parlati F., Laflamme P., Tessier D. C., Gour-Salin B., Thomas D. Y., Storer A. C. Engineering of papain: selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry. 1991 Sep 17;30(37):8929–8936. doi: 10.1021/bi00101a003. [DOI] [PubMed] [Google Scholar]
  14. Kowlessur D., O'Driscoll M., Topham C. M., Templeton W., Thomas E. W., Brocklehurst K. The interplay of electrostatic fields and binding interactions determining catalytic-site reactivity in actinidin. A possible origin of differences in the behaviour of actinidin and papain. Biochem J. 1989 Apr 15;259(2):443–452. doi: 10.1042/bj2590443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kowlessur D., Thomas E. W., Topham C. M., Templeton W., Brocklehurst K. Dependence of the P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Quantification of selectivity in the catalysed hydrolysis of the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides. Biochem J. 1990 Mar 15;266(3):653–660. doi: 10.1042/bj2660653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kowlessur D., Topham C. M., Thomas E. W., O'Driscoll M., Templeton W., Brocklehurst K. Identification of signalling and non-signalling binding contributions to enzyme reactivity. Alternative combinations of binding interactions provide for change in transition-state geometry in reactions of papain. Biochem J. 1989 Mar 15;258(3):755–764. doi: 10.1042/bj2580755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindahl P., Abrahamson M., Björk I. Interaction of recombinant human cystatin C with the cysteine proteinases papain and actinidin. Biochem J. 1992 Jan 1;281(Pt 1):49–55. doi: 10.1042/bj2810049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ménard R., Carrière J., Laflamme P., Plouffe C., Khouri H. E., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry. 1991 Sep 17;30(37):8924–8928. doi: 10.1021/bi00101a002. [DOI] [PubMed] [Google Scholar]
  19. Ménard R., Khouri H. E., Plouffe C., Dupras R., Ripoll D., Vernet T., Tessier D. C., Lalberté F., Thomas D. Y., Storer A. C. A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain. Biochemistry. 1990 Jul 17;29(28):6706–6713. doi: 10.1021/bi00480a021. [DOI] [PubMed] [Google Scholar]
  20. Ménard R., Khouri H. E., Plouffe C., Laflamme P., Dupras R., Vernet T., Tessier D. C., Thomas D. Y., Storer A. C. Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain. Biochemistry. 1991 Jun 4;30(22):5531–5538. doi: 10.1021/bi00236a028. [DOI] [PubMed] [Google Scholar]
  21. Ménard R., Plouffe C., Khouri H. E., Dupras R., Tessier D. C., Vernet T., Thomas D. Y., Storer A. C. Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Protein Eng. 1991 Feb;4(3):307–311. doi: 10.1093/protein/4.3.307. [DOI] [PubMed] [Google Scholar]
  22. Patel M., Kayani I. S., Mellor G. W., Sreedharan S., Templeton W., Thomas E. W., Thomas M., Brocklehurst K. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Biochem J. 1992 Jan 15;281(Pt 2):553–559. doi: 10.1042/bj2810553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stubbs M. T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., Turk V. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990 Jun;9(6):1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Templeton W., Kowlessur D., Thomas E. W., Topham C. M., Brocklehurst K. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition. Biochem J. 1990 Mar 15;266(3):645–651. doi: 10.1042/bj2660645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Topham C. M., Salih E., Frazao C., Kowlessur D., Overington J. P., Thomas M., Brocklehurst S. M., Patel M., Thomas E. W., Brocklehurst K. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J. 1991 Nov 15;280(Pt 1):79–92. doi: 10.1042/bj2800079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Varughese K. I., Ahmed F. R., Carey P. R., Hasnain S., Huber C. P., Storer A. C. Crystal structure of a papain-E-64 complex. Biochemistry. 1989 Feb 7;28(3):1330–1332. doi: 10.1021/bi00429a058. [DOI] [PubMed] [Google Scholar]
  28. Vernet T., Khouri H. E., Laflamme P., Tessier D. C., Musil R., Gour-Salin B. J., Storer A. C., Thomas D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J Biol Chem. 1991 Nov 15;266(32):21451–21457. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES