Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 1;287(Pt 1):21–29. doi: 10.1042/bj2870021

Biosynthesis of heparin. The D-glucuronosyl- and N-acetyl-D-glucosaminyltransferase reactions and their relation to polymer modification.

K Lidholt 1, U Lindahl 1
PMCID: PMC1133118  PMID: 1417774

Abstract

Oligosaccharides with the general structure [GlcA-GlcNAc]n-GlcA-aMan (aMan is 2,5-anhydro-D-mannose), derived from the Escherichia coli K5 capsular polysaccharide, were found to serve as monosaccharide acceptors for a GlcNAc-transferase, solubilized from a mouse mastocytoma microsomal fraction and implicated in heparin biosynthesis. Digestion of these oligosaccharides with beta-D-glucuronidase yielded acceptors for the GlcA-transferase that acts in concert with the GlcNAc-transferase. Assays based on the oligosaccharide acceptors showed broad pH optima for the two enzymes, centred around pH 6.5 for the GlcNAc-transferase and around pH 7.0 for the GlcA-transferase. The GlcNAc-transferase showed an absolute requirement for Mn2+, whereas the GlcA-transferase was stimulated by Ca2+ and Mg2+ but not by Mn2+. The GlcNAc acceptor ability of the [GlcA-GlcNAc]n-GlcA-aMan oligosaccharides increased with increasing chain length, as reflected by the apparent Km, which was 60 microM for a hexasaccharide but 6 microM for a hexadecasaccharide. By contrast, the Km for [GlcNAc-GlcA]n-aMan oligosaccharides in the GlcA-transferase reaction was higher, approximately 0.5 mM, and unaffected by acceptor size. After chemical modification of the oligosaccharides to obtain mixed N-substituents (N-unsubstituted, N-acetylated or N-sulphated GlcN residues), GlcNAc transfer was found to be virtually independent of the N-substituent pattern of the acceptor sequence. The GlcA-transferase, on the other hand, showed marked preference for an acceptor with a non-reducing-terminal GlcNAc-GlcA-GlcNSO3- sequence, which would thus have a lower Km for the enzyme than the corresponding fully N-acetylated structure. These results, along with our previous finding that chain elongation in a mastocytoma microsomal system is strongly promoted by concomitant N-sulphation of the nascent chain [Lidholt, Kjellén & Lindahl (1989) Biochem. J. 261, 999-1007], raise the possibility that the glycosyltransferases and the N-deacetylase/N-sulphotransferase act in concert during chain elongation, assembled into an enzyme complex.

Full text

PDF
21

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Bäckström G., Hök M., Lindahl U., Feingold D. S., Malmström A., Rodén L., Jacobsson I. Biosynthesis of heparin. Assay and properties of the microsomal uronosyl C-5 epimerase. J Biol Chem. 1979 Apr 25;254(8):2975–2982. [PubMed] [Google Scholar]
  3. Dietrich C. P., Nader H. B., Buonassisi V., Colburn P. Inhibition of synthesis of heparan sulfate by selenate: possible dependence on sulfation for chain polymerization. FASEB J. 1988 Jan;2(1):56–59. doi: 10.1096/fasebj.2.1.2961646. [DOI] [PubMed] [Google Scholar]
  4. FURTH J., HAGEN P., HIRSCH E. I. Transplantable mastocytoma in the mouse containing histamine, heparin, 5-hydroxytryptamine. Proc Soc Exp Biol Med. 1957 Aug-Sep;95(4):824–828. doi: 10.3181/00379727-95-23375. [DOI] [PubMed] [Google Scholar]
  5. Forsee W. T., Rodén L. Biosynthesis of heparin. Transfer of N-acetylglucosamine to heparan sulfate oligosaccharides. J Biol Chem. 1981 Jul 25;256(14):7240–7247. [PubMed] [Google Scholar]
  6. Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gundlach M. W., Conrad H. E. Glycosyl transferases in chondroitin sulphate biosynthesis. Effect of acceptor structure on activity. Biochem J. 1985 Mar 15;226(3):705–714. doi: 10.1042/bj2260705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helting T. Biosynthesis of heparin. Solubilization and partial purification of uridine diphosphate glucuronic acid: acceptor glucuronosyltransferase from mouse mastocytoma. J Biol Chem. 1972 Jul 10;247(13):4327–4332. [PubMed] [Google Scholar]
  9. Helting T., Lindahl U. Biosynthesis of heparin. I. Transfer of N-acetylglucosamine and glucuronic acid to low-molecular weight heparin fragments. Acta Chem Scand. 1972;26(9):3515–3523. doi: 10.3891/acta.chem.scand.26-3515. [DOI] [PubMed] [Google Scholar]
  10. Helting T., Lindahl U. Occurrence and biosynthesis of beta-glucuronidic linkages in heparin. J Biol Chem. 1971 Sep 10;246(17):5442–5447. [PubMed] [Google Scholar]
  11. Hök M., Lindahl U., Hallén A., Bäckström G. Biosynthesis of heparin. Studies on the microsomal sulfation process. J Biol Chem. 1975 Aug 10;250(15):6065–6071. [PubMed] [Google Scholar]
  12. Hök M., Riesenfeld J., Lindahl U. N-[3H]Acetyl-labeling, a convenient method for radiolabeling of glycosaminoglycans. Anal Biochem. 1982 Jan 15;119(2):236–245. doi: 10.1016/0003-2697(82)90580-2. [DOI] [PubMed] [Google Scholar]
  13. Iozzo R. V. Presence of unsulfated heparan chains on the heparan sulfate proteoglycan of human colon carcinoma cells. Implications for heparan sulfate proteoglycan biosynthesis. J Biol Chem. 1989 Feb 15;264(5):2690–2699. [PubMed] [Google Scholar]
  14. Jacobsson I., Lindahl U. Biosynthesis of heparin. Concerted action of late polymer-modification reactions. J Biol Chem. 1980 Jun 10;255(11):5094–5100. [PubMed] [Google Scholar]
  15. Jacobsson I., Lindahl U., Jensen J. W., Rodén L., Prihar H., Feingold D. S. Biosynthesis of heparin. Substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase. J Biol Chem. 1984 Jan 25;259(2):1056–1063. [PubMed] [Google Scholar]
  16. Jacobsson K. G., Riesenfeld J., Lindahl U. Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells. J Biol Chem. 1985 Oct 5;260(22):12154–12159. [PubMed] [Google Scholar]
  17. Kusche M., Bäckström G., Riesenfeld J., Petitou M., Choay J., Lindahl U. Biosynthesis of heparin. O-sulfation of the antithrombin-binding region. J Biol Chem. 1988 Oct 25;263(30):15474–15484. [PubMed] [Google Scholar]
  18. Kusche M., Hannesson H. H., Lindahl U. Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. Biochem J. 1991 Apr 1;275(Pt 1):151–158. doi: 10.1042/bj2750151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LEVY L., PETRACEK F. J. Chemical and pharmacological studies on N-resulfated heparin. Proc Soc Exp Biol Med. 1962 Apr;109:901–905. doi: 10.3181/00379727-109-27372. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lidholt K., Kjellén L., Lindahl U. Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem J. 1989 Aug 1;261(3):999–1007. doi: 10.1042/bj2610999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lidholt K., Riesenfeld J., Jacobsson K. G., Feingold D. S., Lindahl U. Biosynthesis of heparin. Modulation of polysaccharide chain length in a cell-free system. Biochem J. 1988 Sep 1;254(2):571–578. doi: 10.1042/bj2540571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lidholt K., Weinke J. L., Kiser C. S., Lugemwa F. N., Bame K. J., Cheifetz S., Massagué J., Lindahl U., Esko J. D. A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2267–2271. doi: 10.1073/pnas.89.6.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindahl U., Bäckström G., Jansson L., Hallén A. Biosynthesis of heparin. II. Formation of sulfamino groups. J Biol Chem. 1973 Oct 25;248(20):7234–7241. [PubMed] [Google Scholar]
  25. Pejler G., Bäckström G., Lindahl U., Paulsson M., Dziadek M., Fujiwara S., Timpl R. Structure and affinity for antithrombin of heparan sulfate chains derived from basement membrane proteoglycans. J Biol Chem. 1987 Apr 15;262(11):5036–5043. [PubMed] [Google Scholar]
  26. Pettersson I., Kusche M., Unger E., Wlad H., Nylund L., Lindahl U., Kjellén L. Biosynthesis of heparin. Purification of a 110-kDa mouse mastocytoma protein required for both glucosaminyl N-deacetylation and N-sulfation. J Biol Chem. 1991 May 5;266(13):8044–8049. [PubMed] [Google Scholar]
  27. Riesenfeld J., Hök M., Lindahl U. Biosynthesis of heparin. Concerted action of early polymer-modification reactions. J Biol Chem. 1982 Jan 10;257(1):421–425. [PubMed] [Google Scholar]
  28. SILBERT J. E. INCORPORATION OF 14C AND 3H FROM NUCLEOTIDE SUGARS INTO A POLYSACCHARIDE IN THE PRESENCE OF A CELL-FREE PREPARATION FROM MOUSE MAST CELL TUMORS. J Biol Chem. 1963 Nov;238:3542–3546. [PubMed] [Google Scholar]
  29. Shaklee P. N., Conrad H. E. Hydrazinolysis of heparin and other glycosaminoglycans. Biochem J. 1984 Jan 1;217(1):187–197. doi: 10.1042/bj2170187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  31. Sugumaran G., Silbert J. E. Relationship of sulfation to ongoing chondroitin polymerization during biosynthesis of chondroitin 4-sulfate by microsomal preparations from cultured mouse mastocytoma cells. J Biol Chem. 1990 Oct 25;265(30):18284–18288. [PubMed] [Google Scholar]
  32. Vann W. F., Schmidt M. A., Jann B., Jann K. The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur J Biochem. 1981 May 15;116(2):359–364. doi: 10.1111/j.1432-1033.1981.tb05343.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES