Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2024 Jul;28(35):1–169. doi: 10.3310/HYHN1078

Accuracy of glomerular filtration rate estimation using creatinine and cystatin C for identifying and monitoring moderate chronic kidney disease: the eGFR-C study.

Edmund J Lamb, Jonathan Barratt, Elizabeth A Brettell, Paul Cockwell, R Nei Dalton, Jon J Deeks, Gillian Eaglestone, Tracy Pellatt-Higgins, Philip A Kalra, Kamlesh Khunti, Fiona C Loud, Ryan S Ottridge, Aisling Potter, Ceri Rowe, Katie Scandrett, Alice J Sitch, Paul E Stevens, Claire C Sharpe, Bethany Shinkins, Alison Smith, Andrew J Sutton, Maarten W Taal
PMCID: PMC11331378  PMID: 39056437

Abstract

BACKGROUND

Estimation of glomerular filtration rate using equations based on creatinine is widely used to manage chronic kidney disease. In the UK, the Chronic Kidney Disease Epidemiology Collaboration creatinine equation is recommended. Other published equations using cystatin C, an alternative marker of kidney function, have not gained widespread clinical acceptance. Given higher cost of cystatin C, its clinical utility should be validated before widespread introduction into the NHS.

OBJECTIVES

Primary objectives were to: (1) compare accuracy of glomerular filtration rate equations at baseline and longitudinally in people with stage 3 chronic kidney disease, and test whether accuracy is affected by ethnicity, diabetes, albuminuria and other characteristics; (2) establish the reference change value for significant glomerular filtration rate changes; (3) model disease progression; and (4) explore comparative cost-effectiveness of kidney disease monitoring strategies.

DESIGN

A longitudinal, prospective study was designed to: (1) assess accuracy of glomerular filtration rate equations at baseline (n = 1167) and their ability to detect change over 3 years (n = 875); (2) model disease progression predictors in 278 individuals who received additional measurements; (3) quantify glomerular filtration rate variability components (n = 20); and (4) develop a measurement model analysis to compare different monitoring strategy costs (n = 875).

SETTING

Primary, secondary and tertiary care.

PARTICIPANTS

Adults (≥ 18 years) with stage 3 chronic kidney disease.

INTERVENTIONS

Estimated glomerular filtration rate using the Chronic Kidney Disease Epidemiology Collaboration and Modification of Diet in Renal Disease equations.

MAIN OUTCOME MEASURES

Measured glomerular filtration rate was the reference against which estimating equations were compared with accuracy being expressed as P30 (percentage of values within 30% of reference) and progression (variously defined) studied as sensitivity/specificity. A regression model of disease progression was developed and differences for risk factors estimated. Biological variation components were measured and the reference change value calculated. Comparative costs of monitoring with different estimating equations modelled over 10 years were calculated.

RESULTS

Accuracy (P30) of all equations was ≥ 89.5%: the combined creatinine-cystatin equation (94.9%) was superior (p < 0.001) to other equations. Within each equation, no differences in P30 were seen across categories of age, gender, diabetes, albuminuria, body mass index, kidney function level and ethnicity. All equations showed poor (< 63%) sensitivity for detecting patients showing kidney function decline crossing clinically significant thresholds (e.g. a 25% decline in function). Consequently, the additional cost of monitoring kidney function annually using a cystatin C-based equation could not be justified (incremental cost per patient over 10 years = £43.32). Modelling data showed association between higher albuminuria and faster decline in measured and creatinine-estimated glomerular filtration rate. Reference change values for measured glomerular filtration rate (%, positive/negative) were 21.5/-17.7, with lower reference change values for estimated glomerular filtration rate.

LIMITATIONS

Recruitment of people from South Asian and African-Caribbean backgrounds was below the study target.

FUTURE WORK

Prospective studies of the value of cystatin C as a risk marker in chronic kidney disease should be undertaken.

CONCLUSIONS

Inclusion of cystatin C in glomerular filtration rate-estimating equations marginally improved accuracy but not detection of disease progression. Our data do not support cystatin C use for monitoring of glomerular filtration rate in stage 3 chronic kidney disease.

TRIAL REGISTRATION

This trial is registered as ISRCTN42955626.

FUNDING

This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: 11/103/01) and is published in full in Health Technology Assessment; Vol. 28, No. 35. See the NIHR Funding and Awards website for further award information.

Plain language summary

Chronic kidney disease, which affects approximately 14% of the adult population, often has no symptoms but, in some people, may later develop into kidney failure. Kidney disease is most often detected using a blood test called creatinine. Creatinine does not identify everyone with kidney disease, or those most likely to develop more serious kidney disease. An alternative blood test called cystatin C may be more accurate, but it is more expensive than the creatinine test. We compared the accuracy of these two tests in more than 1000 people with moderate kidney disease. Participants were tested over 3 years to see if the tests differed in their ability to detect worsening kidney function. We also wanted to identify risk factors associated with loss of kidney function, and how much the tests normally vary to better understand what results mean. We compared the accuracy and costs of monitoring people with the two markers. Cystatin C was found slightly more accurate than the creatinine test at estimating kidney function when comparing the baseline single measurements (95% accurate compared to 90%), but not at detecting worsening function over time. This means that the additional cost of monitoring people over time with cystatin C to detect kidney disease progression could not be justified. Kidney test results could vary by up to 20% between tests without necessarily implying changes in underlying kidney function – this is the normal level of individual variation. Cystatin C marginally improved accuracy of kidney function testing but not ability to detect worsening kidney function. Cystatin C improves identification of moderate chronic kidney disease, but our results do not support its use for routine monitoring of kidney function in such patients.


Full text of this article can be found in Bookshelf.

References

  1. Public Health England. Chronic Kidney Disease Prevalence Model. 2014. URL: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/612303/ChronickidneydiseaseCKDprevalencemodelbriefing.pdf (accessed 26 July 2023).
  2. United Kingdom Renal Registry. 24th Annual Report. 2022. URL: https://ukkidney.org/audit-research/annual-report/24th-annual-report-data-31122020 (accessed 26 July 2023).
  3. Kerr M, Bray B, Medcalf J, O’Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol Dial Transplant 2012;27(Suppl. 3):iii73–80. doi: 10.1093/ndt/gfs269. [DOI] [PMC free article] [PubMed]
  4. Kent S, Schlackow I, Lozano-Kuhne J, Reith C, Emberson J, Haynes R, et al.; SHARP Collaborative Group. What is the impact of chronic kidney disease stage and cardiovascular disease on the annual cost of hospital care in moderate-to-severe kidney disease? BMC Nephrol 2015;16:65. doi: 10.1186/s12882-015-0054-0. [DOI] [PMC free article] [PubMed]
  5. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al.; Chronic Kidney Disease Prognosis Consortium. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011;79:1341–52. doi: 10.1038/ki.2010.536. [DOI] [PubMed]
  6. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al.; Chronic Kidney Disease Prognosis Consortium. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 2011;80:93–104. doi: 10.1038/ki.2010.531. [DOI] [PMC free article] [PubMed]
  7. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al.; Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:2073–81. doi: 10.1016/S0140-6736(10)60674-5. [DOI] [PMC free article] [PubMed]
  8. Grams ME, Sang Y, Ballew SH, Gansevoort RT, Kimm H, Kovesdy CP, et al.; CKD Prognosis Consortium. A meta-analysis of the association of estimated GFR, albuminuria, age, race, and sex with acute kidney injury. Am J Kidney Dis 2015;66:591–601. doi: 10.1053/j.ajkd.2015.02.337. [DOI] [PMC free article] [PubMed]
  9. Hannan M, Ansari S, Meza N, Anderson AH, Srivastava A, Waikar S, et al.; CRIC Study Investigators. Risk factors for CKD progression: overview of findings from the CRIC study. Clin J Am Soc Nephrol 2021;16:648–59. doi: 10.2215/CJN.07830520. [DOI] [PMC free article] [PubMed]
  10. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al.; RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–9. doi: 10.1056/NEJMoa011161. [DOI] [PubMed]
  11. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993;329:1456–62. doi: 10.1056/NEJM199311113292004. [DOI] [PubMed]
  12. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000;355:253–9. [PubMed]
  13. Gruppo Italiano di Studi Epidemiologici in Nefrologia. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 1997;349:1857–63. [PubMed]
  14. Ruggenenti P, Pagano E, Tammuzzo L, Benini R, Garattini L, Remuzzi G. Ramipril prolongs life and is cost effective in chronic proteinuric nephropathies. Kidney Int 2001;59:286–94. doi: 10.1046/j.1523-1755.2001.00490.x. [DOI] [PubMed]
  15. Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436–46. doi: 10.1056/NEJMoa2024816. [DOI] [PubMed]
  16. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists' Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022;400:1788–801. doi: 10.1016/S0140-6736(22)02074-8. [DOI] [PMC free article] [PubMed]
  17. Staplin N, Roddick AJ, Emberson J, Reith C, Riding A, Wonnacott A, et al. Net effects of sodium-glucose co-transporter-2 inhibition in different patient groups: a meta-analysis of large placebo-controlled randomized trials. EClinicalMedicine 2021;41:101163. doi: 10.1016/j.eclinm.2021.101163. [DOI] [PMC free article] [PubMed]
  18. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al.; The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N Engl J Med 2023;388:117–27.
  19. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019;380:2295–306. doi: 10.1056/NEJMoa1811744. [DOI] [PubMed]
  20. Vart P, Vaduganathan M, Jongs N, Remuzzi G, Wheeler DC, Hou FF, et al. Estimated lifetime benefit of combined RAAS and SGLT2 inhibitor therapy in patients with albuminuric CKD without diabetes. Clin J Am Soc Nephrol 2022;17:1754–62. doi: 10.2215/CJN.08900722. [DOI] [PMC free article] [PubMed]
  21. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 1995;6:257–63. doi: 10.1681/ASN.V62257. [DOI] [PubMed]
  22. National Institute for Health and Care Excellence. Chronic Kidney Disease. Early Identification and Management of Chronic Kidney Disease in Adults in Primary and Secondary Care. Manchester, UK: National Institute for Health and Care Excellence; 2014. [PubMed]
  23. Stevens PE, O’Donoghue DJ, de Lusignan S, Van Vlymen J, Klebe B, Middleton R, et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int 2007;72:92–9. doi: 10.1038/sj.ki.5002273. [DOI] [PubMed]
  24. de Lusignan S, Tomson C, Harris K, van Vlymen J, Gallagher H. Creatinine fluctuation has a greater effect than the formula to estimate glomerular filtration rate on the prevalence of chronic kidney disease. Nephron Clin Pract 2011;117:c213–24. doi: 10.1159/000320341. [DOI] [PubMed]
  25. Moynihan R, Doust J, Henry D. Preventing overdiagnosis: how to stop harming the healthy. BMJ 2012;344:e3502. doi: 10.1136/bmj.e3502. [DOI] [PubMed]
  26. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, Grubb A. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 1994;40:1921–6. [PubMed]
  27. Kidney Disease Improving Global Outcomes. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 2013;3:1–150. doi: 10.1038/ki.2013.243. [DOI] [PubMed]
  28. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al.; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20–9. doi: 10.1056/NEJMoa1114248. [DOI] [PMC free article] [PubMed]
  29. Peralta CA, Katz R, Sarnak MJ, Ix J, Fried LF, De Boer I, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. J Am Soc Nephrol 2011;22:147–55. doi: 10.1681/ASN.2010050483. [DOI] [PMC free article] [PubMed]
  30. Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat Med 2019;25:1753–60. doi: 10.1038/s41591-019-0627-8. [DOI] [PMC free article] [PubMed]
  31. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461–70. doi: 10.7326/0003-4819-130-6-199903160-00002. [DOI] [PubMed]
  32. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12. doi: 10.7326/0003-4819-150-9-200905050-00006. [DOI] [PMC free article] [PubMed]
  33. Hsu CY, Bansal N. Measured GFR as ‘gold standard’ – all that glitters is not gold? Clin J Am Soc Nephrol 2011;6:1813–4. doi: 10.2215/CJN.06040611. [DOI] [PubMed]
  34. Kwong YTD, Stevens LA, Selvin E, Zhang YL, Greene T, Van Lente F, et al. Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am J Kidney Dis 2010;56:39–49. doi: 10.1053/j.ajkd.2010.02.347. [DOI] [PMC free article] [PubMed]
  35. Fraser CG, Harris EK. Generation and application of data on biological variation in clinical chemistry. Crit Rev Clin Lab Sci 1989;27:409–37. doi: 10.3109/10408368909106595. [DOI] [PubMed]
  36. Bartlett WA, Braga F, Carobene A, Coskun A, Prusa R, Fernandez-Calle P, et al.; Biological Variation Working Group, European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). A checklist for critical appraisal of studies of biological variation. Clin Chem Lab Med 2015;53:879–85. doi: 10.1515/cclm-2014-1127. [DOI] [PubMed]
  37. Levey AS, Greene T, Kusek JW, Beck GJ. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol 2000;11:155A.
  38. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al.; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006;145:247–54. doi: 10.7326/0003-4819-145-4-200608150-00004. [DOI] [PubMed]
  39. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al.; National Kidney Disease Education Program Laboratory Working Group. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 2006;52:5–18. doi: 10.1373/clinchem.2005.0525144. [DOI] [PubMed]
  40. National Institute for Health and Care Excellence. Chronic Kidney Disease: National Clinical Guideline for Early Identification and Management in Adults in Primary and Secondary Care. Clinical Guideline 73. Manchester, UK: National Institute for Health and Care Excellence; 2008.
  41. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med 2012;156:785–95. doi: 10.7326/0003-4819-156-11-201203200-00391. [DOI] [PubMed]
  42. Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 2012;157:471–81. doi: 10.7326/0003-4819-157-7-201210020-00003. [DOI] [PubMed]
  43. Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 2014;60:974–86. doi: 10.1373/clinchem.2013.220707. [DOI] [PubMed]
  44. Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 2016;31:798–806. doi: 10.1093/ndt/gfv454. [DOI] [PMC free article] [PubMed]
  45. Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant 2017;32:497–507. doi: 10.1093/ndt/gfw425. [DOI] [PMC free article] [PubMed]
  46. Björk J, Bäck SE, Ebert N, Evans M, Grubb A, Hansson M, et al. GFR estimation based on standardized creatinine and cystatin C: a European multicenter analysis in older adults. Clin Chem Lab Med 2018;56:422–35. doi: 10.1515/cclm-2017-0563. [DOI] [PubMed]
  47. Pottel H, Björk J, Courbebaisse M, Couzi L, Ebert N, Eriksen BO, et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med 2021;174:183–91. doi: 10.7326/M20-4366. [DOI] [PubMed]
  48. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al.; Chronic Kidney Disease Epidemiology Collaboration. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 2021;385:1737–49. doi: 10.1056/NEJMoa2102953. [DOI] [PMC free article] [PubMed]
  49. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002;40:221–6. doi: 10.1053/ajkd.2002.34487. [DOI] [PubMed]
  50. Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 2002;48:699–707. [PubMed]
  51. Grubb A, Blirup-Jensen S, Lindström V, Schmidt C, Althaus H, Zegers I; IFCC Working Group on Standardisation of Cystatin C (WG-SCC). First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 2010;48:1619–21. doi: 10.1515/CCLM.2010.318. [DOI] [PubMed]
  52. Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 2013;61:57–66. doi: 10.1053/j.ajkd.2012.06.016. [DOI] [PubMed]
  53. Björk J, Grubb A, Sterner G, Nyman U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71:232–9. doi: 10.3109/00365513.2011.557086. [DOI] [PubMed]
  54. Hounkpatin HO, Fraser SDS, Honney R, Dreyer G, Brettle A, Roderick PJ. Ethnic minority disparities in progression and mortality of pre-dialysis chronic kidney disease: a systematic scoping review. BMC Nephrol 2020;21:217. doi: 10.1186/s12882-020-01852-3. [DOI] [PMC free article] [PubMed]
  55. Pallayova M, Rayner H, Taheri S, Dasgupta I. Is there a difference in progression of renal disease between South Asian and white European diabetic adults with moderately reduced kidney function? J Diabetes Complications 2015;29:761–5. doi: 10.1016/j.jdiacomp.2015.05.012. [DOI] [PubMed]
  56. Gerber C, Cai X, Lee J, Craven T, Scialla J, Souma N, et al. Incidence and progression of chronic kidney disease in black and white individuals with type 2 diabetes. Clin J Am Soc Nephrol 2018;13:884–92. doi: 10.2215/CJN.11871017. [DOI] [PMC free article] [PubMed]
  57. Mathur R, Dreyer G, Yaqoob MM, Hull SA. Ethnic differences in the progression of chronic kidney disease and risk of death in a UK diabetic population: an observational cohort study. BMJ Open 2018;8:e020145. doi: 10.1136/bmjopen-2017-020145. [DOI] [PMC free article] [PubMed]
  58. Major RW, Shepherd D, Medcalf JF, Xu G, Gray LJ, Brunskill NJ. Comorbidities and outcomes in South Asian individuals with chronic kidney disease: an observational primary care cohort. Nephrol Dial Transplant 2021;37:108–14. doi: 10.1093/ndt/gfaa291. [DOI] [PubMed]
  59. National Institute for Health and Care Excellence. Chronic Kidney Disease: Assessment and Management [NG203]. 2021. URL: www.nice.org.uk/guidance/ng203 (accessed 26 July 2023). [PubMed]
  60. Lewis J, Agodoa L, Cheek D, Greene T, Middleton J, O’Connor D, et al.; African-American Study of Hypertension and Kidney Disease. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis 2001;38:744–53. doi: 10.1053/ajkd.2001.27691. [DOI] [PubMed]
  61. Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol 2006;17:2937–44. doi: 10.1681/ASN.2006040368. [DOI] [PubMed]
  62. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al.; Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009;53:982–92. doi: 10.1053/j.ajkd.2008.12.034. [DOI] [PubMed]
  63. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis 2010;56:32–8. doi: 10.1053/j.ajkd.2010.02.344. [DOI] [PubMed]
  64. Teo BW, Xu H, Wang D, Li J, Sinha AK, Shuter B, et al. GFR estimating equations in a multiethnic Asian population. Am J Kidney Dis 2011;58:56–63. doi: 10.1053/j.ajkd.2011.02.393. [DOI] [PubMed]
  65. Praditpornsilpa K, Townamchai N, Chaiwatanarat T, Tiranathanagul K, Katawatin P, Susantitaphong P, et al. The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. Nephrol Dial Transplant 2011;26:2780–5. doi: 10.1093/ndt/gfq815. [DOI] [PubMed]
  66. Wang Y, Levey AS, Inker LA, Jessani S, Bux R, Samad Z, et al. Performance and determinants of serum creatinine and cystatin C-based GFR estimating equations in South Asians. Kidney Int Rep 2021;6:962–75. doi: 10.1016/j.ekir.2021.01.005. [DOI] [PMC free article] [PubMed]
  67. Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. Am J Kidney Dis 2022;79:268–288.e1. doi: 10.1053/j.ajkd.2021.08.003. [DOI] [PubMed]
  68. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 2004;164:659–63. doi: 10.1001/archinte.164.6.659. [DOI] [PubMed]
  69. Hemmelgarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA, et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int 2006;69:2155–61. doi: 10.1038/sj.ki.5000270. [DOI] [PubMed]
  70. Ruggenenti P, Perna A, Remuzzi G. ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. Ramipril Efficacy in Nephropathy. J Am Soc Nephrol 2001;12:2832–7. doi: 10.1681/ASN.V12122832. [DOI] [PubMed]
  71. Gall MA, Nielsen FS, Smidt UM, Parving HH. The course of kidney function in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia 1993;36:1071–8. doi: 10.1007/BF02374501. [DOI] [PubMed]
  72. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004;27:195–200. doi: 10.2337/diacare.27.1.195. [DOI] [PubMed]
  73. Parving HH, Andersen AR, Smidt UM, Hommel E, Mathiesen ER, Svendsen PA. Effect of antihypertensive treatment on kidney function in diabetic nephropathy. Br Med J (Clin Res Ed) 1987;294:1443–7. doi: 10.1136/bmj.294.6585.1443. [DOI] [PMC free article] [PubMed]
  74. Björck S, Nyberg G, Mulec H, Granerus G, Herlitz H, Aurell M. Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy. Br Med J (Clin Res Ed) 1986;293:471–4. doi: 10.1136/bmj.293.6545.471. [DOI] [PMC free article] [PubMed]
  75. Hoefield RA, Kalra PA, Baker PG, Sousa I, Diggle PJ, Gibson MJ, et al. The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol Dial Transplant 2011;26:887–92. doi: 10.1093/ndt/gfq526. [DOI] [PubMed]
  76. Gowans EM, Fraser CG. Biological variation of serum and urine creatinine and creatinine clearance: ramifications for interpretation of results and patient care. Ann Clin Biochem 1988;25:259–63. doi: 10.1177/000456328802500312. [DOI] [PubMed]
  77. Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 1998;44:1535–9. [PubMed]
  78. Reinhard M, Erlandsen EJ, Randers E. Biological variation of cystatin C and creatinine. Scand J Clin Lab Invest 2009;69:831–6. doi: 10.3109/00365510903307947. [DOI] [PubMed]
  79. Delanaye P, Cavalier E, Depas G, Chapelle JP, Krzesinski JM. New data on the intraindividual variation of cystatin C. Nephron Clin Pract 2008;108:c246–8. doi: 10.1159/000124327. [DOI] [PubMed]
  80. Andersen TB, Erlandsen EJ, Frøkiaer J, Eskild-Jensen A, Brøchner-Mortensen J. Comparison of within- and between-subject variation of serum cystatin C and serum creatinine in children aged 2–13 years. Scand J Clin Lab Invest 2010;70:54–9. doi: 10.3109/00365510903556308. [DOI] [PubMed]
  81. Bandaranayake N, Ankrah-Tetteh T, Wijeratne S, Swaminathan R. Intra-individual variation in creatinine and cystatin C. Clin Chem Lab Med 2007;45:1237–9. doi: 10.1515/CCLM.2007.256. [DOI] [PubMed]
  82. Toffaletti JG, McDonnell EH. Variation of serum creatinine, cystatin C, and creatinine clearance tests in persons with normal renal function. Clin Chim Acta 2008;395:115–9. doi: 10.1016/j.cca.2008.05.020. [DOI] [PubMed]
  83. Ruggenenti P, Gaspari F, Cannata A, Carrara F, Cella C, Ferrari S, et al.; GFR-ADPKD Study Group. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLOS ONE 2012;7:e32533. doi: 10.1371/journal.pone.0032533. [DOI] [PMC free article] [PubMed]
  84. Padala S, Tighiouart H, Inker LA, Contreras G, Beck GJ, Lewis J, et al. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. Am J Kidney Dis 2012;60:217–24. doi: 10.1053/j.ajkd.2012.01.024. [DOI] [PMC free article] [PubMed]
  85. Peralta CA, Shlipak MG, Judd S, Cushman M, McClellan W, Zakai NA, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 2011;305:1545–52. doi: 10.1001/jama.2011.468. [DOI] [PMC free article] [PubMed]
  86. Hounkpatin HO, Harris S, Fraser SDS, Day J, Mindell JS, Taal MW, et al. Prevalence of chronic kidney disease in adults in England: comparison of nationally representative cross-sectional surveys from 2003 to 2016. BMJ Open 2020;10:e038423. doi: 10.1136/bmjopen-2020-038423. [DOI] [PMC free article] [PubMed]
  87. Levin A, Stevens PE. Early detection of CKD: the benefits, limitations and effects on prognosis. Nat Rev Nephrol 2011;7:446–57. doi: 10.1038/nrneph.2011.86. [DOI] [PubMed]
  88. Lamb EJ, Brettell EA, Cockwell P, Dalton N, Deeks JJ, Harris K, et al.; eGFR-C study group. The eGFR-C study: accuracy of glomerular filtration rate (GFR) estimation using creatinine and cystatin C and albuminuria for monitoring disease progression in patients with stage 3 chronic kidney disease – prospective longitudinal study in a multiethnic population. BMC Nephrol 2014;15:13. doi: 10.1186/1471-2369-15-13. [DOI] [PMC free article] [PubMed]
  89. Erley CM, Bader BD, Berger ED, Vochazer A, Jorzik JJ, Dietz K, Risler T. Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med 2001;29:1544–50. doi: 10.1097/00003246-200108000-00008. [DOI] [PubMed]
  90. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 2009;4:1832–43. doi: 10.2215/CJN.01640309. [DOI] [PubMed]
  91. Gaspari F, Perico N, Matalone M, Signorini O, Azzollini N, Mister M, Remuzzi G. Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J Am Soc Nephrol 1998;9:310–3. doi: 10.1681/ASN.V92310. [DOI] [PubMed]
  92. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978;93:62–6. doi: 10.1016/s0022-3476(78)80601-5. [DOI] [PubMed]
  93. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 1916;17:863–71. [PubMed]
  94. Shardlow A, McIntyre NJ, Fluck RJ, McIntyre CW, Taal MW. Chronic kidney disease in primary care: outcomes after five years in a prospective cohort study. PLOS Med 2016;13:e1002128. doi: 10.1371/journal.pmed.1002128. [DOI] [PMC free article] [PubMed]
  95. Turin TC, Tonelli M, Manns BJ, Ravani P, Ahmed SB, Hemmelgarn BR. Chronic kidney disease and life expectancy. Nephrol Dial Transplant 2012;27:3182–6. doi: 10.1093/ndt/gfs052. [DOI] [PubMed]
  96. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004;8:R204–12. doi: 10.1186/cc2872. [DOI] [PMC free article] [PubMed]
  97. Rowe C, Sitch AJ, Barratt J, Brettell EA, Cockwell P, Dalton RN, et al.; eGFR-C Study Group. Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease. Kidney Int 2019;96:429–35. doi: 10.1016/j.kint.2019.02.021. [DOI] [PubMed]
  98. Bröchner-Mortensen J. A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 1972;30:271–4. doi: 10.3109/00365517209084290. [DOI] [PubMed]
  99. Blake GM, Roe D, Lazarus CR. Long-term precision of glomerular filtration rate measurements using 51Cr-EDTA plasma clearance. Nucl Med Commun 1997;18:776–84. doi: 10.1097/00006231-199708000-00012. [DOI] [PubMed]
  100. Burniston M. Clinical Guideline for the Measurement of Glomerular Filtration Rate (GFR) Using Plasma Sampling. Approved by the British Nuclear Medicine Society Professional Standards Committee; 2018. URL: www.bnms.org.uk/page/BNMSClinicalGuidelines (accessed 29 January 2024).
  101. Bargnoux AS, Pieroni L, Cristol JP, Kuster N, Delanaye P, Carlier MC, et al.; Société Française de Biologie Clinique (SFBC). Multicenter evaluation of cystatin C measurement after assay standardization. Clin Chem 2017;63:833–41. doi: 10.1373/clinchem.2016.264325. [DOI] [PubMed]
  102. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1–266. [PubMed]
  103. Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
  104. National Institute for Health and Care Excellence. Obesity: Identification, Assessment and Management (CG189). 2014. URL: www.nice.org.uk/guidance/cg189 (accessed 26 July 2023). [PubMed]
  105. O’Brien TE, Funk GM. A gentle introduction to optimal design for regression models. Am Stat 2003;57:265–7.
  106. Simundic AM, Kackov S, Miler M, Fraser CG, Petersen PH. Terms and symbols used in studies on biological variation: the need for harmonization. Clin Chem 2015;61:438–9. doi: 10.1373/clinchem.2014.233791. [DOI] [PubMed]
  107. Cole TJ. Sympercents: symmetric percentage differences on the 100 log(e) scale simplify the presentation of log transformed data. Stat Med 2000;19:3109–25. doi: 10.1002/1097-0258(20001130)19:22<3109::aid-sim558>3.0.co;2-f. [DOI] [PubMed]
  108. Koopmans LH, Owen DB, Rosenblatt JI. Confidence intervals for the coefficient of variation for the normal and log normal distributions. Biometrika 1964;51:25–32.
  109. Burdick RK, Graybill FA. Confidence Intervals on Variance Components. Abingdon: Taylor & Francis; 1992.
  110. Fokkema MR, Herrmann Z, Muskiet FA, Moecks J. Reference change values for brain natriuretic peptides revisited. Clin Chem 2006;52:1602–3. doi: 10.1373/clinchem.2006.069369. [DOI] [PubMed]
  111. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLOS Med 2010;7:e1000251. doi: 10.1371/journal.pmed.1000251. [DOI] [PMC free article] [PubMed]
  112. Sutton AJ, Breheny K, Deeks J, Khunti K, Sharpe C, Ottridge RS, et al.; eGFR-C study group. Methods used in economic evaluations of chronic kidney disease testing – a systematic review. PLOS ONE 2015;10:e0140063. doi: 10.1371/journal.pone.0140063. [DOI] [PMC free article] [PubMed]
  113. Perera R, Stevens R, Aronson JK, Banerjee A, Evans J, Feakins BG, et al. Long-term Monitoring in Primary Care for Chronic Kidney Disease and Chronic Heart Failure: A Multi-Method Research Programme. Southampton: Programme Grants for Applied Research; 2021. [PubMed]
  114. National Institute for Health and Care Excellence. Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification. Clinical Guideline [CG181]. 2014. URL: www.nice.org.uk/guidance/cg181 (accessed 26 July 2023). [PubMed]
  115. Smith AF, Shinkins B, Hall PS, Hulme CT, Messenger MP. Toward a framework for outcome-based analytical performance specifications: a methodology review of indirect methods for evaluating the impact of measurement uncertainty on clinical outcomes. Clin Chem 2019;65:1363–74. doi: 10.1373/clinchem.2018.300954. [DOI] [PMC free article] [PubMed]
  116. NHS. National Cost Collection 2019/20 Report. 2020. URL: www.england.nhs.uk/wp-content/uploads/2021/06/National-Cost-Collection-2019-20-Report-FINAL.pdf (accessed 26 July 2023).
  117. Jones K, Burns A. Unit Costs of Health and Social Care. Canterbury: Personal Social Services Research Unit, University of Kent. 2021.
  118. Björk J, Nyman U, Courbebaisse M, Couzi L, Dalton RN, Dubourg L, et al. Prospects for improved glomerular filtration rate estimation based on creatinine-results from a transnational multicentre study. Clin Kidney J 2020;13:674–83. doi: 10.1093/ckj/sfaa039. [DOI] [PMC free article] [PubMed]
  119. Preiss DJ, Godber IM, Lamb EJ, Dalton RN, Gunn IR. The influence of a cooked-meat meal on estimated glomerular filtration rate. Ann Clin Biochem 2007;44:35–42. doi: 10.1258/000456307779595995. [DOI] [PubMed]
  120. Porrini E, Ruggenenti P, Luis-Lima S, Carrara F, Jiménez A, de Vries APJ, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol 2019;15:177–90. doi: 10.1038/s41581-018-0080-9. [DOI] [PubMed]
  121. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985;28:830–8. doi: 10.1038/ki.1985.205. [DOI] [PubMed]
  122. Shah KF, Stevens PE, Lamb EJ. The influence of a cooked-fish meal on estimated glomerular filtration rate. Ann Clin Biochem 2020;57:182–5. doi: 10.1177/0004563219899673. [DOI] [PubMed]
  123. Sveinbjornsson G, Mikaelsdottir E, Palsson R, Indridason OS, Holm H, Jonasdottir A, et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum Mol Genet 2014;23:6935–43. doi: 10.1093/hmg/ddu399. [DOI] [PubMed]
  124. Macdonald J, Marcora S, Jibani M, Roberts G, Kumwenda M, Glover R, et al. GFR estimation using cystatin C is not independent of body composition. Am J Kidney Dis 2006;48:712–9. doi: 10.1053/j.ajkd.2006.07.001. [DOI] [PubMed]
  125. Wasen E, Isoaho R, Mattila K, Vahlberg T, Kivelä SL, Irjala K. Serum cystatin C in the aged: relationships with health status. Am J Kidney Dis 2003;42:36–43. doi: 10.1016/s0272-6386(03)00406-2. [DOI] [PubMed]
  126. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 2004;65:1416–21. doi: 10.1111/j.1523-1755.2004.00517.x. [DOI] [PubMed]
  127. Liu X, Foster MC, Tighiouart H, Anderson AH, Beck GJ, Contreras G, et al.; CRIC (Chronic Renal Insufficiency Cohort) Study Investigators. Non-GFR determinants of low-molecular-weight serum protein filtration markers in CKD. Am J Kidney Dis 2016;68:892–900. doi: 10.1053/j.ajkd.2016.07.021. [DOI] [PMC free article] [PubMed]
  128. O’Seaghdha CM, Tin A, Yang Q, Katz R, Liu Y, Harris T, et al. Association of a cystatin C gene variant with cystatin C levels, CKD, and risk of incident cardiovascular disease and mortality. Am J Kidney Dis 2014;63:16–22. doi: 10.1053/j.ajkd.2013.06.015. [DOI] [PMC free article] [PubMed]
  129. Inker LA, Tighiouart H, Coresh J, Foster MC, Anderson AH, Beck GJ, et al. GFR estimation using β-trace protein and β2-microglobulin in CKD. Am J Kidney Dis 2016;67:40–8. doi: 10.1053/j.ajkd.2015.07.025. [DOI] [PMC free article] [PubMed]
  130. Freed TA, Coresh J, Inker LA, Toal DR, Perichon R, Chen J, et al. Validation of a metabolite panel for a more accurate estimation of glomerular filtration rate using quantitative LC-MS/MS. Clin Chem 2019;65:406–18. doi: 10.1373/clinchem.2018.288092. [DOI] [PMC free article] [PubMed]
  131. Eckfeldt JH, Karger AB, Miller WG, Rynders GP, Inker LA. Performance in measurement of serum cystatin C by laboratories participating in the College of American Pathologists 2014 CYS survey. Arch Pathol Lab Med 2015;139:888–93. doi: 10.5858/arpa.2014-0427-CP. [DOI] [PubMed]
  132. Karger AB, Long T, Inker LA, Eckfeldt JH; College of American Pathologists Accuracy Based Committee and Chemistry Resource Committee. Improved performance in measurement of serum cystatin C by laboratories participating in the College of American Pathologists’ 2019 CYS survey. Arch Pathol Lab Med 2022;146:1218–23. doi: 10.5858/arpa.2021-0306-CP. [DOI] [PubMed]
  133. Shardlow A, McIntyre NJ, Fraser SDS, Roderick P, Raftery J, Fluck RJ, et al. The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: a primary care cohort study. PLOS Med 2017;14:e1002400. doi: 10.1371/journal.pmed.1002400. [DOI] [PMC free article] [PubMed]
  134. Lamb EJ, Tomson CR, Roderick PJ; Clinical Sciences Reviews Committee of the Association for Clinical Biochemistry. Estimating kidney function in adults using formulae. Ann Clin Biochem 2005;42:321–45. doi: 10.1258/0004563054889936. [DOI] [PubMed]
  135. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 2004;141:929–37. doi: 10.7326/0003-4819-141-12-200412210-00009. [DOI] [PubMed]
  136. Faisal W, Tang HM, Tiley S, Kukard C. Not all body surface area formulas are the same, but does it matter? J Glob Oncol 2016;2:436–7. doi: 10.1200/JGO.2016.005876. [DOI] [PMC free article] [PubMed]
  137. Blake GM, Grewal GS. An evaluation of the body surface area correction for 51Cr-EDTA measurements of glomerular filtration rate. Nucl Med Commun 2005;26:447–51. doi: 10.1097/00006231-200505000-00009. [DOI] [PubMed]
  138. Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol 2005;16:763–73. doi: 10.1681/ASN.2004070549. [DOI] [PubMed]
  139. Nyman U, Grubb A, Sterner G, Björk J. The CKD-EPI and MDRD equations to estimate GFR. Validation in the Swedish Lund-Malmö Study cohort. Scand J Clin Lab Invest 2011;71:129–38. doi: 10.3109/00365513.2010.543143. [DOI] [PubMed]
  140. Poggio ED, Wang X, Greene T, Van Lente F, Hall PM. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 2005;16:459–66. doi: 10.1681/ASN.2004060447. [DOI] [PubMed]
  141. Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/173 m2. Am J Kidney Dis 2010;56:486–95. doi: 10.1053/j.ajkd.2010.03.026. [DOI] [PMC free article] [PubMed]
  142. Gama RM, Clery A, Griffiths K, Heraghty N, Peters AM, Palmer K, et al. Estimated glomerular filtration rate equations in people of self-reported black ethnicity in the United Kingdom: inappropriate adjustment for ethnicity may lead to reduced access to care. PLOS ONE 2021;16:e0255869. doi: 10.1371/journal.pone.0255869. [DOI] [PMC free article] [PubMed]
  143. Fukushima T, Nakano J, Ishii S, Natsuzako A, Hirase T, Sakamoto J, Okita M. Characteristics of muscle function and the effect of cachexia in patients with haematological malignancy. Eur J Cancer Care (Engl) 2019;28:e12956. doi: 10.1111/ecc.12956. [DOI] [PubMed]
  144. Hsu CY, Yang W, Parikh RV, Anderson AH, Chen TK, Cohen DL, et al.; CRIC Study Investigators. Race, genetic ancestry, and estimating kidney function in CKD. N Engl J Med 2021;385:1750–60. doi: 10.1056/NEJMoa2103753. [DOI] [PMC free article] [PubMed]
  145. Lewis J, Greene T, Appel L, Contreras G, Douglas J, Lash J, et al.; AASK Study Group. A comparison of iothalamate-GFR and serum creatinine-based outcomes: acceleration in the rate of GFR decline in the African American Study of Kidney Disease and Hypertension. J Am Soc Nephrol 2004;15:3175–83. doi: 10.1097/01.ASN.0000146688.74084.A3. [DOI] [PubMed]
  146. Fontseré N, Salinas I, Bonal J, Bayés B, Riba J, Torres F, et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol Dial Transplant 2006;21:2152–8. doi: 10.1093/ndt/gfl221. [DOI] [PubMed]
  147. Rossing P, Rossing K, Gaede P, Pedersen O, Parving HH. Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy. Diabetes Care 2006;29:1024–30. doi: 10.2337/diacare.2951024. [DOI] [PubMed]
  148. Xie D, Joffe MM, Brunelli SM, Beck G, Chertow GM, Fink JC, et al. A comparison of change in measured and estimated glomerular filtration rate in patients with nondiabetic kidney disease. Clin J Am Soc Nephrol 2008;3:1332–8. doi: 10.2215/CJN.05631207. [DOI] [PMC free article] [PubMed]
  149. Perkins BA, Nelson RG, Ostrander BE, Blouch KL, Krolewski AS, Myers BD, Warram JH. Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J Am Soc Nephrol 2005;16:1404–12. doi: 10.1681/ASN.2004100854. [DOI] [PMC free article] [PubMed]
  150. de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, Zinman B, Steffes MW; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Longitudinal changes in estimated and measured GFR in type 1 diabetes. J Am Soc Nephrol 2014;25:810–8. doi: 10.1681/ASN.2013050557. [DOI] [PMC free article] [PubMed]
  151. Lucas GM, Atta MG, Zook K, Vaidya D, Tao X, Maier P, Schwartz GJ. Cross-sectional and longitudinal performance of creatinine- and cystatin C-based estimating equations relative to exogenously measured glomerular filtration rate in HIV-positive and HIV-negative persons. J Acquir Immune Defic Syndr 2020;85:e58–66. doi: 10.1097/QAI.0000000000002471. [DOI] [PMC free article] [PubMed]
  152. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985;33:278–85. doi: 10.1111/j.1532-5415.1985.tb07117.x. [DOI] [PubMed]
  153. Post A, Tsikas D, Bakker SJL. Creatine is a conditionally essential nutrient in chronic kidney disease: a hypothesis and narrative literature review. Nutrients 2019;11:1044. doi: 10.3390/nu11051044. [DOI] [PMC free article] [PubMed]
  154. Turin TC, James M, Ravani P, Tonelli M, Manns BJ, Quinn R, et al. Proteinuria and rate of change in kidney function in a community-based population. J Am Soc Nephrol 2013;24:1661–7. doi: 10.1681/ASN.2012111118. [DOI] [PMC free article] [PubMed]
  155. Hoefield RA, Kalra PA, Lane B, O’Donoghue DJ, Foley RN, Middleton RJ. Associations of baseline characteristics with evolution of eGFR in a referred chronic kidney disease cohort. QJM 2013;106:915–24. doi: 10.1093/qjmed/hct115. [DOI] [PubMed]
  156. Melsom T, Nair V, Schei J, Mariani L, Stefansson VTN, Harder JL, et al. Correlation between baseline GFR and subsequent change in GFR in Norwegian adults without diabetes and in Pima Indians. Am J Kidney Dis 2019;73:777–85. doi: 10.1053/j.ajkd.2018.11.011. [DOI] [PubMed]
  157. Moore KH, Clemmer JS. Questioning the renoprotective role of L-type calcium channel blockers in chronic kidney disease using physiological modeling. Am J Physiol Renal Physiol 2021;321:F548–57. doi: 10.1152/ajprenal.00233.2021. [DOI] [PMC free article] [PubMed]
  158. Levey AS, Greene T, Schluchter MD, Cleary PA, Teschan PE, Lorenz RA, et al. Glomerular filtration rate measurements in clinical trials. Modification of Diet in Renal Disease Study Group and the Diabetes Control and Complications Trial Research Group. J Am Soc Nephrol 1993;4:1159–71. doi: 10.1681/asn.v451159. [DOI] [PMC free article] [PubMed]
  159. Bröchner-Mortensen J, Rödbro P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest 1976;36:35–43. doi: 10.1080/00365517609068016. [DOI] [PubMed]
  160. Wilkinson J, Fleming JS, Waller DG. Effect of food and activity on the reproducibility of isotopic GFR estimation. Nucl Med Commun 1990;11:697–700. doi: 10.1097/00006231-199010000-00005. [DOI] [PubMed]
  161. Carobene A, Marino I, Coskun A, Serteser M, Unsal I, Guerra E, et al.; European Biological Variation Study of the EFLM Working Group on Biological Variation. The EuBIVAS Project: within- and between-subject biological variation data for serum creatinine using enzymatic and alkaline picrate methods and implications for monitoring. Clin Chem 2017;63:1527–36. doi: 10.1373/clinchem.2017.275115. [DOI] [PubMed]
  162. Waikar SS, Rebholz CM, Zheng Z, Hurwitz S, Hsu CY, Feldman HI, et al. Biological variability of estimated GFR and albuminuria in CKD. Am J Kidney Dis 2018;72:538–46. doi: 10.1053/j.ajkd.2018.04.023. [DOI] [PMC free article] [PubMed]
  163. Selvin E, Juraschek SP, Eckfeldt J, Levey AS, Inker LA, Coresh J. Within-person variability in kidney measures. Am J Kidney Dis 2013;61:716–22. doi: 10.1053/j.ajkd.2012.11.048. [DOI] [PMC free article] [PubMed]
  164. Carter JL, Parker CT, Stevens PE, Eaglestone G, Knight S, Farmer CK, Lamb EJ. Biological variation of plasma and urinary markers of acute kidney injury in patients with chronic kidney disease. Clin Chem 2016;62:876–83. doi: 10.1373/clinchem.2015.250993. [DOI] [PubMed]
  165. Podracka L, Feber J, Lepage N, Filler G. Intra-individual variation of cystatin C and creatinine in pediatric solid organ transplant recipients. Pediatr Transplant 2005;9:28–32. doi: 10.1111/j.1399-3046.2005.00235.x. [DOI] [PubMed]
  166. Tan GD, Lewis AV, James TJ, Altmann P, Taylor RP, Levy JC. Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 2002;25:2004–9. doi: 10.2337/diacare.25.11.2004. [DOI] [PubMed]
  167. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 2003;18:2024–31. doi: 10.1093/ndt/gfg349. [DOI] [PubMed]
  168. Røraas T, Petersen PH, Sandberg S. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin Chem 2012;58:1306–13. doi: 10.1373/clinchem.2012.187781. [DOI] [PubMed]
  169. Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, et al.; SBU GFR Review Group. Measuring GFR: a systematic review. Am J Kidney Dis 2014;64:411–24. doi: 10.1053/j.ajkd.2014.04.010. [DOI] [PubMed]
  170. Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011;305:1553–9. doi: 10.1001/jama.2011.451. [DOI] [PubMed]
  171. Hasegawa T, Sakamaki K, Koiwa F, Akizawa T, Hishida A; CKD-JAC Study Investigators. Clinical prediction models for progression of chronic kidney disease to end-stage kidney failure under pre-dialysis nephrology care: results from the Chronic Kidney Disease Japan Cohort Study. Clin Exp Nephrol 2019;23:189–98. doi: 10.1007/s10157-018-1621-z. [DOI] [PMC free article] [PubMed]
  172. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296–305. doi: 10.1056/NEJMoa041031. [DOI] [PubMed]
  173. Astor BC, Hallan SI, Miller ER, 3rd, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol 2008;167:1226–34. doi: 10.1093/aje/kwn033. [DOI] [PubMed]
  174. Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al.; Chronic Kidney Disease Prognosis Consortium. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013;346:f324. doi: 10.1136/bmj.f324. [DOI] [PMC free article] [PubMed]
  175. Swartling O, Rydell H, Stendahl M, Segelmark M, Trolle Lagerros Y, Evans M. CKD progression and mortality among men and women: a nationwide study in Sweden. Am J Kidney Dis 2021;78:190–9.e1. doi: 10.1053/j.ajkd.2020.11.026. [DOI] [PubMed]
  176. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al.; Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012;307:1941–51. doi: 10.1001/jama.2012.3954. [DOI] [PMC free article] [PubMed]
  177. Astor BC, Shafi T, Hoogeveen RC, Matsushita K, Ballantyne CM, Inker LA, Coresh J. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am J Kidney Dis 2012;59:653–62. doi: 10.1053/j.ajkd.2011.11.042. [DOI] [PMC free article] [PubMed]
  178. Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R, Polkinghorne KR, et al.; CKD Prognosis Consortium. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 2013;369:932–43. doi: 10.1056/NEJMoa1214234. [DOI] [PMC free article] [PubMed]
  179. Fleming JS, Nunan TO; British Nuclear Medicine Society. The new BNMS guidelines for measurement of glomerular filtration rate. Nucl Med Commun 2004;25:755–7. doi: 10.1097/01.mnm.0000136714.77658.4a. [DOI] [PubMed]
  180. Ebert N, Loesment A, Martus P, Jakob O, Gaedeke J, Kuhlmann M, et al. Iohexol plasma clearance measurement in older adults with chronic kidney disease-sampling time matters. Nephrol Dial Transplant 2015;30:1307–14. doi: 10.1093/ndt/gfv116. [DOI] [PubMed]
  181. Seegmiller JC, Burns BE, Schinstock CA, Lieske JC, Larson TS. Discordance between iothalamate and iohexol urinary clearances. Am J Kidney Dis 2016;67:49–55. doi: 10.1053/j.ajkd.2015.08.020. [DOI] [PubMed]
  182. Levey AS, Inker LA. GFR as the ‘gold standard’: estimated, measured, and true. Am J Kidney Dis 2016;67:9–12. doi: 10.1053/j.ajkd.2015.09.014. [DOI] [PubMed]
  183. National Committee for Clinical Laboratory Standards. Method Comparison and Bias Estimation Using Patient Samples; Approved Guideline – Second Edition. NCCLS document EP9-A2 [ISBN 1-56238-472-4]. Malvern, PA: Clinical and Laboratory Standards Institute; 2002.
  184. Li L, Astor BC, Lewis J, Hu B, Appel LJ, Lipkowitz MS, et al. Longitudinal progression trajectory of GFR among patients with CKD. Am J Kidney Dis 2012;59:504–12. doi: 10.1053/j.ajkd.2011.12.009. [DOI] [PMC free article] [PubMed]
  185. Ali I, Chinnadurai R, Ibrahim ST, Kalra PA. Adverse outcomes associated with rapid linear and non-linear patterns of chronic kidney disease progression. BMC Nephrol 2021;22:82. doi: 10.1186/s12882-021-02282-5. [DOI] [PMC free article] [PubMed]
  186. Ali I, Ibrahim ST, Chinnadurai R, Green D, Taal M, Whetton TD, Kalra PA. A paradigm to discover biomarkers associated with chronic kidney disease progression. Biomark Insights 2020;15:1177271920976146. doi: 10.1177/1177271920976146. [DOI] [PMC free article] [PubMed]
  187. Redwood S, Gill PS. Under-representation of minority ethnic groups in research – call for action. Br J Gen Pract 2013;63:342–3. doi: 10.3399/bjgp13X668456. [DOI] [PMC free article] [PubMed]
  188. Smart A, Harrison E. The under-representation of minority ethnic groups in UK medical research. Ethn Health 2017;22:65–82. doi: 10.1080/13557858.2016.1182126. [DOI] [PubMed]
  189. Farooqi A, Jutlla K, Raghavan R, Wilson A, Uddin MS, Akroyd C, et al. Developing a toolkit for increasing the participation of black, Asian and minority ethnic communities in health and social care research. BMC Med Res Methodol 2022;22:17. doi: 10.1186/s12874-021-01489-2. [DOI] [PMC free article] [PubMed]
  190. Bodicoat DH, Routen AC, Willis A, Ekezie W, Gillies C, Lawson C, et al. Promoting inclusion in clinical trials – a rapid review of the literature and recommendations for action. Trials 2021;22:880. doi: 10.1186/s13063-021-05849-7. [DOI] [PMC free article] [PubMed]
  191. Ekezie W, Czyznikowska BM, Rohit S, Harrison J, Miah N, Campbell-Morris P, Khunti K. The views of ethnic minority and vulnerable communities towards participation in COVID-19 vaccine trials. J Public Health (Oxf) 2021;43:e258–60. doi: 10.1093/pubmed/fdaa196. [DOI] [PMC free article] [PubMed]
  192. Major RW, Shepherd D, Medcalf JF, Xu G, Gray LJ, Brunskill NJ. The kidney failure risk equation for prediction of end stage renal disease in UK primary care: an external validation and clinical impact projection cohort study. PLOS Med 2019;16:e1002955. doi: 10.1371/journal.pmed.1002955. [DOI] [PMC free article] [PubMed]
  193. Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ 1996;313:275–83. doi: 10.1136/bmj.313.7052.275. [DOI] [PMC free article] [PubMed]
  194. Gonzalez-Perez JG. Developing a scoring system to quality assess economic evaluations. Eur J Health Econ 2002;3:131–6. doi: 10.1007/s10198-002-0100-2. [DOI] [PubMed]
  195. Siegel JE, Krolewski AS, Warram JH, Weinstein MC. Cost-effectiveness of screening and early treatment of nephropathy in patients with insulin-dependent diabetes mellitus. J Am Soc Nephrol 1992;3:S111–9. doi: 10.1681/ASN.V34s111. [DOI] [PubMed]
  196. Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA 2003;290:3101–14. doi: 10.1001/jama.290.23.3101. [DOI] [PubMed]
  197. Palmer AJ, Valentine WJ, Chen R, Mehin N, Gabriel S, Bregman B, Rodby RA. A health economic analysis of screening and optimal treatment of nephropathy in patients with type 2 diabetes and hypertension in the USA. Nephrol Dial Transplant 2008;23:1216–23. doi: 10.1093/ndt/gfn082. [DOI] [PubMed]
  198. Howard K, White S, Salkeld G, McDonald S, Craig JC, Chadban S, Cass A. Cost-effectiveness of screening and optimal management for diabetes, hypertension, and chronic kidney disease: a modeled analysis. Value Health 2010;13:196–208. doi: 10.1111/j.1524-4733.2009.00668.x. [DOI] [PubMed]
  199. Sekhar DL, Wang L, Hollenbeak CS, Widome MD, Paul IM. A cost-effectiveness analysis of screening urine dipsticks in well-child care. Pediatrics 2010;125:660–3. doi: 10.1542/peds.2009-1980. [DOI] [PubMed]
  200. Kondo M, Yamagata K, Hoshi SL, Saito C, Asahi K, Moriyama T, et al. Cost-effectiveness of chronic kidney disease mass screening test in Japan. Clin Exp Nephrol 2012;16:279–91. doi: 10.1007/s10157-011-0567-1. [DOI] [PMC free article] [PubMed]
  201. Srisubat A, Sriratanaban J, Ngamkiatphaisan S, Tungsanga K. Cost-effectiveness of annual microalbuminuria screening in Thai diabetics. Asian Biomed 2014;8:371–9.
  202. Go DS, Kim SH, Park J, Ryu DR, Lee HJ, Jo MW. Cost-utility analysis of the National Health Screening Program for chronic kidney disease in Korea. Nephrology (Carlton) 2019;24:56–64. doi: 10.1111/nep.13203. [DOI] [PubMed]
  203. Golan L, Birkmeyer JD, Welch HG. The cost-effectiveness of treating all patients with type 2 diabetes with angiotensin-converting enzyme inhibitors. Ann Intern Med 1999;131:660–7. doi: 10.7326/0003-4819-131-9-199911020-00005. [DOI] [PubMed]
  204. Kiberd BA, Jindal KK. Should all Pima Indians with type 2 diabetes mellitus be prescribed routine angiotensin-converting enzyme inhibition therapy to prevent renal failure? Mayo Clin Proc 1999;74:559–64. doi: 10.4065/74.6.559. [DOI] [PubMed]
  205. Boersma C, Gansevoort RT, Pechlivanoglou P, Visser ST, van Toly FF, de Jong-van den Berg LTW, et al.; Prevention of Renal and Vascular End Stage Disease Study Group. Screen-and-treat strategies for albuminuria to prevent cardiovascular and renal disease: cost-effectiveness of nationwide and targeted interventions based on analysis of cohort data from the Netherlands. Clin Ther 2010;32:1103–21. doi: 10.1016/j.clinthera.2010.06.013. [DOI] [PubMed]
  206. Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, et al.; Centers for Disease Control and Prevention CKD Initiative. A health policy model of CKD: 1. Model construction, assumptions, and validation of health consequences. Am J Kidney Dis 2010;55:452–62. doi: 10.1053/j.ajkd.2009.11.016. [DOI] [PubMed]
  207. Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, et al.; Centers for Disease Control and Prevention CKD Initiative. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. Am J Kidney Dis 2010;55:463–73. doi: 10.1053/j.ajkd.2009.11.017. [DOI] [PubMed]
  208. Hoerger TJ, Wittenborn JS, Zhuo X, Pavkov ME, Burrows NR, Eggers P, et al. Cost-effectiveness of screening for microalbuminuria among African Americans. J Am Soc Nephrol 2012;23:2035–41. doi: 10.1681/ASN.2012040347. [DOI] [PMC free article] [PubMed]
  209. Kessler R, Keusch G, Szucs TD, Wittenborn JS, Hoerger TJ, Brügger U, Wieser S. Health economic modelling of the cost-effectiveness of microalbuminuria screening in Switzerland. Swiss Med Wkly 2012;142:w13508. doi: 10.4414/smw.2012.13508. [DOI] [PubMed]
  210. Farmer AJ, Stevens R, Hirst J, Lung T, Oke J, Clarke P, et al. Optimal strategies for identifying kidney disease in diabetes: properties of screening tests, progression of renal dysfunction and impact of treatment – systematic review and modelling of progression and cost-effectiveness. Health Technol Assess 2014;18:1–128. doi: 10.3310/hta18140. [DOI] [PMC free article] [PubMed]
  211. Ferguson TW, Tangri N, Tan Z, James MT, Lavallee BDA, Chartrand CD, et al. Screening for chronic kidney disease in Canadian indigenous peoples is cost-effective. Kidney Int 2017;92:192–200. doi: 10.1016/j.kint.2017.02.022. [DOI] [PubMed]
  212. Wang H, Yang L, Wang F, Zhang L. Strategies and cost-effectiveness evaluation of persistent albuminuria screening among high-risk population of chronic kidney disease. BMC Nephrol 2017;18:135. doi: 10.1186/s12882-017-0538-1. [DOI] [PMC free article] [PubMed]
  213. Yarnoff BO, Hoerger TJ, Simpson SK, Leib A, Burrows NR, Shrestha SS, Pavkov ME; Centers for Disease Control and Prevention CKD Initiative. The cost-effectiveness of using chronic kidney disease risk scores to screen for early-stage chronic kidney disease. BMC Nephrol 2017;18:85. doi: 10.1186/s12882-017-0497-6. [DOI] [PMC free article] [PubMed]
  214. Wu B, Zhang S, Lin H, Mou S. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: a cost-effectiveness analysis. J Diabetes Investig 2018;9:152–61. doi: 10.1111/jdi.12653. [DOI] [PMC free article] [PubMed]
  215. Le Floch JP, Charles MA, Philippon C, Perlemuter L. Cost-effectiveness of screening for microalbuminuria using immunochemical dipstick tests or laboratory assays in diabetic patients. Diabet Med 1994;11:349–56. doi: 10.1111/j.1464-5491.1994.tb00285.x. [DOI] [PubMed]
  216. Kiberd BA, Jindal KK. Screening to prevent renal failure in insulin dependent diabetic patients: an economic evaluation. BMJ 1995;311:1595–9. doi: 10.1136/bmj.311.7020.1595. [DOI] [PMC free article] [PubMed]
  217. Kiberd BA, Jindal KK. Routine treatment of insulin-dependent diabetic patients with ACE inhibitors to prevent renal failure: an economic evaluation. Am J Kidney Dis 1998;31:49–54. doi: 10.1053/ajkd.1998.v31.pm9428451. [DOI] [PubMed]
  218. Adarkwah CC, Gandjour A. Cost-effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in newly diagnosed type 2 diabetes in Germany. Int J Technol Assess Health Care 2010;26:62–70. doi: 10.1017/S0266462309990584. [DOI] [PubMed]
  219. Adarkwah CC, Gandjour A, Akkerman M, Evers SM. Cost-effectiveness of angiotensin-converting enzyme inhibitors for the prevention of diabetic nephropathy in The Netherlands – a Markov model. PLOS ONE 2011;6:e26139. doi: 10.1371/journal.pone.0026139. [DOI] [PMC free article] [PubMed]
  220. den Hartog JR, Reese PP, Cizman B, Feldman HI. The costs and benefits of automatic estimated glomerular filtration rate reporting. Clin J Am Soc Nephrol 2009;4:419–27. doi: 10.2215/CJN.04080808. [DOI] [PMC free article] [PubMed]
  221. Manns B, Hemmelgarn B, Tonelli M, Au F, Chiasson TC, Dong J, Klarenbach S; Alberta Kidney Disease Network. Population based screening for chronic kidney disease: cost effectiveness study. BMJ 2010;341:c5869. doi: 10.1136/bmj.c5869. [DOI] [PMC free article] [PubMed]
  222. Ravaghi H, Ebrahimnia M, Farzanah A, Rostami Z, Madani M. Cost-effectiveness analysis of screening chronic kidney disease in Iran. J Clin Diagn Res 2019;13:IC01–4.
  223. Critselis E, Vlahou A, Stel VS, Morton RL. Cost-effectiveness of screening type 2 diabetes patients for chronic kidney disease progression with the CKD273 urinary peptide classifier as compared to urinary albumin excretion. Nephrol Dial Transplant 2018;33:441–9. doi: 10.1093/ndt/gfx068. [DOI] [PubMed]

RESOURCES