Abstract
1. A model is presented for adenosine transport and metabolism in different steady states. The model considers steady-state equations for metabolic enzymes based on information from the literature on their kinetic behaviour. 2. Assuming that extracellular adenosine and inosine are translocated by three transporters, we have devised rate equations for these nucleoside transporters which are valid when both nucleosides are present. Since the Na(+)-independent transporter can either incorporate nucleosides into the cell or release them, various conditions have been simulated in which inosine was either incorporated or released. 3. Control analyses are reported which show that the fluxes towards intracellular adenine nucleosides are controlled by ecto-5'-nucleotidase in some circumstances and by the nucleoside transporters in others. The nucleoside transporter is responsible for five fluxes (two Na+ dependent adenosine transport mechanisms, a Na(+)-dependent inosine transport, a Na(+)-independent adenosine transport and a Na(+)-independent inosine influx or efflux) but the control is not always positive for all these fluxes. The control patterns of these five fluxes indicate that, in the presence of extracellular adenosine and inosine, the intracellular metabolism of adenine derivatives would be highly dependent on the extracellular and intracellular concentrations of both nucleosides, on the ectoenzymes (5'-nucleotidase and adenosine deaminase) and on the transporter. 4. Predictions of the model were examined. The results indicate that a change in one independent variable (extracellular AMP concentration) makes the system evolve towards a new steady state which is far from the initial one and has a different control pattern. In contrast, simulation of inhibition of the carriers produces only slight modification of the fluxes since the concentrations of the metabolites change to counteract the effect. Thus, for instance, a 50% inhibition of the three carriers does not affect the flux towards intracellular adenine nucleotides. Finally, our model has confirmed that the evolution of the concentration of extracellular adenosine, when an increase in extracellular AMP is produced, agrees with the behaviour expected for a neurohormone.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arch J. R., Newsholme E. A. Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem J. 1978 Sep 15;174(3):965–977. doi: 10.1042/bj1740965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bontemps F., Van den Berghe G., Hers H. G. Pathways of adenine nucleotide catabolism in erythrocytes. J Clin Invest. 1986 Mar;77(3):824–830. doi: 10.1172/JCI112379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARTER C. E., COHEN L. H. The preparation and properties of adenylosuccinase and adenylosuccinic acid. J Biol Chem. 1956 Sep;222(1):17–30. [PubMed] [Google Scholar]
- Canela E. I., Ginesta I., Franco R. Simulation of the purine nucleotide cycle as an anaplerotic process in skeletal muscle. Arch Biochem Biophys. 1987 Apr;254(1):142–155. doi: 10.1016/0003-9861(87)90090-7. [DOI] [PubMed] [Google Scholar]
- Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems. Math Biosci. 1989 Jun;94(2):289–309. doi: 10.1016/0025-5564(89)90068-0. [DOI] [PubMed] [Google Scholar]
- Centelles J. J., Franco R., Bozal J. Purification and partial characterization of brain adenosine deaminase: inhibition by purine compounds and by drugs. J Neurosci Res. 1988 Feb;19(2):258–267. doi: 10.1002/jnr.490190212. [DOI] [PubMed] [Google Scholar]
- Fisher M. N., Newsholme E. A. Properties of rat heart adenosine kinase. Biochem J. 1984 Jul 15;221(2):521–528. doi: 10.1042/bj2210521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox I. H., Marchant P. J. Purine catabolism in man: inhibition of 5'-phosphomonesterase activities from placental microsomes. Can J Biochem. 1976 Dec;54(12):1055–1060. doi: 10.1139/o76-154. [DOI] [PubMed] [Google Scholar]
- Franco R., Aran J. M., Colomer D., Matutes E., Vives-Corrons J. L. Association of adenosine deaminase with erythrocyte and platelet plasma membrane: an immunological study using light and electron microscopy. J Histochem Cytochem. 1990 May;38(5):653–658. doi: 10.1177/38.5.2332624. [DOI] [PubMed] [Google Scholar]
- Franco R., Canela E. I. A program for the numerical integration of enzyme kinetic equations using small computers. Int J Biomed Comput. 1984 Nov-Dec;15(6):419–432. doi: 10.1016/0020-7101(84)90013-8. [DOI] [PubMed] [Google Scholar]
- Franco R., Canela E. I., Bozal J. Catabolismo purínico en cerebro de rata. Rev Esp Fisiol. 1981 Sep;37(3):255–262. [PubMed] [Google Scholar]
- Franco R., Canela E. I. Computer simulation of purine metabolism. Eur J Biochem. 1984 Oct 15;144(2):305–315. doi: 10.1111/j.1432-1033.1984.tb08465.x. [DOI] [PubMed] [Google Scholar]
- Franco R., Canela E. I. Computer simulation of purine metabolism. Eur J Biochem. 1984 Oct 15;144(2):305–315. doi: 10.1111/j.1432-1033.1984.tb08465.x. [DOI] [PubMed] [Google Scholar]
- Franco R., Centelles J. J., Kinne R. K. Further characterization of adenosine transport in renal brush-border membranes. Biochim Biophys Acta. 1990 May 24;1024(2):241–248. doi: 10.1016/0005-2736(90)90350-w. [DOI] [PubMed] [Google Scholar]
- Franco R., Centelles J. J., Kinne R. K. Further characterization of adenosine transport in renal brush-border membranes. Biochim Biophys Acta. 1990 May 24;1024(2):241–248. doi: 10.1016/0005-2736(90)90350-w. [DOI] [PubMed] [Google Scholar]
- Frick G. P., Lowenstein J. M. Studies of 5'-nucleotidase in the perfused rat heart. Including measurements of the enzyme in perfused skeletal muscle and liver. J Biol Chem. 1976 Oct 25;251(20):6372–6378. [PubMed] [Google Scholar]
- Hagberg H., Andersson P., Lacarewicz J., Jacobson I., Butcher S., Sandberg M. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem. 1987 Jul;49(1):227–231. doi: 10.1111/j.1471-4159.1987.tb03419.x. [DOI] [PubMed] [Google Scholar]
- Hawkins C. F., Bagnara A. S. Adenosine kinase from human erythrocytes: kinetic studies and characterization of adenosine binding sites. Biochemistry. 1987 Apr 7;26(7):1982–1987. doi: 10.1021/bi00381a030. [DOI] [PubMed] [Google Scholar]
- Headrick J. P., Willis R. J. 5'-Nucleotidase activity and adenosine formation in stimulated, hypoxic and underperfused rat heart. Biochem J. 1989 Jul 15;261(2):541–550. doi: 10.1042/bj2610541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 1984 May;401(1):58–63. doi: 10.1007/BF00581533. [DOI] [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 1984 May;401(1):58–63. doi: 10.1007/BF00581533. [DOI] [PubMed] [Google Scholar]
- Mandel L. J., Takano T., Soltoff S. P., Murdaugh S. Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J Clin Invest. 1988 Apr;81(4):1255–1264. doi: 10.1172/JCI113443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meghji P., Holmquist C. A., Newby A. C. Adenosine formation and release from neonatal-rat heart cells in culture. Biochem J. 1985 Aug 1;229(3):799–805. doi: 10.1042/bj2290799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meghji P., Middleton K. M., Newby A. C. Absolute rates of adenosine formation during ischaemia in rat and pigeon hearts. Biochem J. 1988 Feb 1;249(3):695–703. doi: 10.1042/bj2490695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meghji P., Middleton K., Hassall C. J., Phillips M. I., Newby A. C. Evidence for extracellular deamination of adenosine in the rat heart. Int J Biochem. 1988;20(12):1335–1341. doi: 10.1016/s0020-711x(98)90001-5. [DOI] [PubMed] [Google Scholar]
- Murray A. W. Some properties of adenosine kinase from Ehrlich ascites-tumour cells. Biochem J. 1968 Jan;106(2):549–555. doi: 10.1042/bj1060549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohisalo J. J., Stoneham S., Keso L. Thyroid status and adenosine content of adipose tissue. Biochem J. 1987 Sep 1;246(2):555–557. doi: 10.1042/bj2460555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osswald H., Schmitz H. J., Kemper R. Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation. Pflugers Arch. 1977 Oct 19;371(1-2):45–49. doi: 10.1007/BF00580771. [DOI] [PubMed] [Google Scholar]
- Phillips E., Newsholme E. A. Maximum activities, properties and distribution of 5' nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J Neurochem. 1979 Aug;33(2):553–558. doi: 10.1111/j.1471-4159.1979.tb05187.x. [DOI] [PubMed] [Google Scholar]
- Phillis J. W., O'Regan M. H., Walter G. A. Effects of deoxycoformycin on adenosine, inosine, hypoxanthine, xanthine, and uric acid release from the hypoxemic rat cerebral cortex. J Cereb Blood Flow Metab. 1988 Oct;8(5):733–741. doi: 10.1038/jcbfm.1988.121. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Aran J. M., Woffendin C. Na(+)-dependent, active and Na(+)-independent, facilitated transport of formycin B in mouse spleen lymphocytes. Biochim Biophys Acta. 1990 Feb 16;1022(1):93–102. doi: 10.1016/0005-2736(90)90404-c. [DOI] [PubMed] [Google Scholar]
- Polasek P. M., Thorderson J., Walter G. A., Phillis J. W., Barraco R. A. Adenosine, inosine, hypoxanthine, xanthine and uric acid concentrations in the cerebrospinal fluid of unanaesthetized rats. J Pharm Pharmacol. 1989 Mar;41(3):216–216. doi: 10.1111/j.2042-7158.1989.tb06437.x. [DOI] [PubMed] [Google Scholar]
- Reibel D. K., Rovetto M. J. Separation of myocardial purine nucleosides and nucleotides by one-dimensional thin-layer chromatography. J Chromatogr. 1978 Nov 21;161:406–409. doi: 10.1016/s0021-9673(01)85263-8. [DOI] [PubMed] [Google Scholar]
- Rudolph F. B., Fromm H. J. Initial rate studies of adenylosuccinate synthetase with product and competitive inhibitors. J Biol Chem. 1969 Jul 25;244(14):3832–3839. [PubMed] [Google Scholar]
- Schütz W., Schrader J., Gerlach E. Different sites of adenosine formation in the heart. Am J Physiol. 1981 Jun;240(6):H963–H970. doi: 10.1152/ajpheart.1981.240.6.H963. [DOI] [PubMed] [Google Scholar]
- Setlow B., Lowenstein J. M. Adenylate deaminase. II. Purification and some regulatory properties of the enzyme from calf brain. J Biol Chem. 1967 Feb 25;242(4):607–615. [PubMed] [Google Scholar]
- Simmonds R. J., Harkness R. A. High-performance liquid chromatographic methods for base and nucleoside analysis in extracellular fluids and in cells. J Chromatogr. 1981 Dec 11;226(2):369–381. doi: 10.1016/s0378-4347(00)86071-5. [DOI] [PubMed] [Google Scholar]
- Spychała J., Van den Berghe G. Adenine nucleotide metabolism in isolated chicken hepatocytes. Biochem J. 1987 Mar 1;242(2):551–558. doi: 10.1042/bj2420551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su C. Extracellular functions of nucleotides in heart and blood vessels. Annu Rev Physiol. 1985;47:665–676. doi: 10.1146/annurev.ph.47.030185.003313. [DOI] [PubMed] [Google Scholar]
- WYNGAARDEN J. B., GREENLAND R. A. The inhibition of succinoadenylate kinosynthetase of Escherichia coli by adenosine and guanosine 5'-monophosphates. J Biol Chem. 1963 Mar;238:1054–1057. [PubMed] [Google Scholar]
- Walter G. A., Phillis J. W., O'Reagan M. H. Determination of rat cerebrospinal fluid concentrations of adenosine, inosine, hypoxanthine, xanthine and uric acid by high performance liquid chromatography. J Pharm Pharmacol. 1988 Feb;40(2):140–142. doi: 10.1111/j.2042-7158.1988.tb05201.x. [DOI] [PubMed] [Google Scholar]
- Young J. D., Paterson A. R., Henderson J. F. Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate. Biochim Biophys Acta. 1985 Oct 17;842(2-3):214–224. doi: 10.1016/0304-4165(85)90205-3. [DOI] [PubMed] [Google Scholar]
- Zeidler R. B., Metzler M. H., Moran J. B., Kim H. D. The liver is an organ site for the release of inosine metabolized by non-glycolytic pig red cells. Biochim Biophys Acta. 1985 Mar 8;838(3):321–328. doi: 10.1016/0304-4165(85)90229-6. [DOI] [PubMed] [Google Scholar]
- von Borstel R. W., Wurtman R. J., Conlay L. A. Chronic caffeine consumption potentiates the hypotensive action of circulating adenosine. Life Sci. 1983 Mar 7;32(10):1151–1158. doi: 10.1016/0024-3205(83)90121-2. [DOI] [PubMed] [Google Scholar]
