Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 15;287(Pt 2):487–492. doi: 10.1042/bj2870487

Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid.

M Guzmán 1, M J Geelen 1
PMCID: PMC1133191  PMID: 1332675

Abstract

A procedure is described for the rapid measurement of the activity of mitochondrial-outer-membrane carnitine palmitoyltransferase (CPTo) and peroxisomal carnitine palmitoyltransferase (CPTp) in digitonin-permeabilized hepatocytes. CPTo activity was determined as the tetradecylglycidate (TDGA)-sensitive malonyl-CoA-sensitive CPT activity, whereas CPTp activity was monitored as the TDGA-insensitive malonyl-CoA-sensitive CPT activity. Under these experimental conditions, the respective contributions of CPTo and CPTp to total hepatocellular malonyl-CoA-sensitive CPT activity were 74.6 and 25.4%, which correlated well with the values of 76.9 and 23.1% for the respective contributions of the mitochondrial and the peroxisomal compartment to total hepatocellular palmitate oxidation. The sensitivity of CPTo to inhibition by malonyl-CoA was very similar to that of CPTp; thus 50% inhibition of CPTo and CPTp activities was achieved with malonyl-CoA concentrations of 2.6 +/- 0.5 and 3.0 +/- 0.4 microM respectively. Short-term incubation of hepatocytes with the phosphatase inhibitor okadaic acid (i) increased the activity of CPTo and the rate of mitochondrial palmitate oxidation, (ii) decreased the affinity of CPTo for palmitoyl-CoA substrate, and (iii) decreased the sensitivity of CPTo to inhibition by malonyl-CoA. By contrast, neither the properties of CPTp nor the rate of peroxisomal palmitate oxidation were changed upon incubation of cells with okadaic acid. Results indicate therefore that CPTo, but not CPTp, may be regulated by a mechanism of phosphorylation/dephosphorylation. The physiological relevance of these findings is discussed.

Full text

PDF
487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beynen A. C., Vaartjes W. J., Geelen M. J. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes. 1979 Sep;28(9):828–835. doi: 10.2337/diab.28.9.828. [DOI] [PubMed] [Google Scholar]
  2. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  3. Boon M. R., Zammit V. A. Use of a selectively permeabilized isolated rat hepatocyte preparation to study changes in the properties of overt carnitine palmitoyltransferase activity in situ. Biochem J. 1988 Feb 1;249(3):645–652. doi: 10.1042/bj2490645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady P. S., Brady L. J. Regulation of carnitine palmitoyltransferase in vivo by glucagon and insulin. Biochem J. 1989 Mar 15;258(3):677–682. doi: 10.1042/bj2580677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady P. S., Marine K. A., Brady L. J., Ramsay R. R. Co-ordinate induction of hepatic mitochondrial and peroxisomal carnitine acyltransferase synthesis by diet and drugs. Biochem J. 1989 May 15;260(1):93–100. doi: 10.1042/bj2600093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buechler K. F., Lowenstein J. M. The involvement of carnitine intermediates in peroxisomal fatty acid oxidation: a study with 2-bromofatty acids. Arch Biochem Biophys. 1990 Sep;281(2):233–238. doi: 10.1016/0003-9861(90)90437-4. [DOI] [PubMed] [Google Scholar]
  7. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  9. Cook G. A., Gamble M. S. Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. J Biol Chem. 1987 Feb 15;262(5):2050–2055. [PubMed] [Google Scholar]
  10. Cook G. A., Weakley L. J. Effects of starvation on the carnitine palmitoyltransferase of hepatic peroxisomes. Biochem Soc Trans. 1990 Oct;18(5):988–988. doi: 10.1042/bst0180988. [DOI] [PubMed] [Google Scholar]
  11. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  12. Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guzmán M., Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett. 1991 Oct 7;291(1):105–108. doi: 10.1016/0014-5793(91)81114-n. [DOI] [PubMed] [Google Scholar]
  15. Guzmán M., Castro J. Simultaneous stimulation of fatty acid synthesis and oxidation in rat hepatocytes by vanadate. Arch Biochem Biophys. 1990 Nov 15;283(1):90–95. doi: 10.1016/0003-9861(90)90616-7. [DOI] [PubMed] [Google Scholar]
  16. Guzmán M., Geelen M. J. Effects of ethanol feeding on the activity and regulation of hepatic carnitine palmitoyltransferase I. Arch Biochem Biophys. 1988 Dec;267(2):580–588. doi: 10.1016/0003-9861(88)90065-3. [DOI] [PubMed] [Google Scholar]
  17. Guzmán M., Geelen M. J. Short-term regulation of carnitine palmitoyltransferase activity in isolated rat hepatocytes. Biochem Biophys Res Commun. 1988 Mar 15;151(2):781–787. doi: 10.1016/s0006-291x(88)80349-8. [DOI] [PubMed] [Google Scholar]
  18. Harano Y., Kashiwagi A., Kojima H., Suzuki M., Hashimoto T., Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. doi: 10.1016/0014-5793(85)80385-9. [DOI] [PubMed] [Google Scholar]
  19. Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
  20. Janski A. M., Cornell N. W. Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes. Biochem J. 1980 Feb 15;186(2):423–429. doi: 10.1042/bj1860423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kashfi K., Cook G. A. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors. Biochem J. 1992 Mar 15;282(Pt 3):909–914. doi: 10.1042/bj2820909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
  25. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  26. Murthy M. S., Pande S. V. Characterization of a solubilized malonyl-CoA-sensitive carnitine palmitoyltransferase from the mitochondrial outer membrane as a protein distinct from the malonyl-CoA-insensitive carnitine palmitoyltransferase of the inner membrane. Biochem J. 1990 Jun 15;268(3):599–604. doi: 10.1042/bj2680599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osmundsen H., Bremer J., Pedersen J. I. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1991 Sep 11;1085(2):141–158. doi: 10.1016/0005-2760(91)90089-z. [DOI] [PubMed] [Google Scholar]
  28. Rognstad R. Estimation of peroxisomal and mitochondrial fatty acid oxidation in rat hepatocytes using tritiated substrates. Biochem J. 1991 Oct 1;279(Pt 1):147–150. doi: 10.1042/bj2790147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schulz H. Beta oxidation of fatty acids. Biochim Biophys Acta. 1991 Jan 28;1081(2):109–120. doi: 10.1016/0005-2760(91)90015-a. [DOI] [PubMed] [Google Scholar]
  30. Sephton G. B., Lowenstein J. M. Selective inactivation of peroxisomal and cytosolic 3-ketothiolase IB by 2-chloro-6-phenylhexanoate in intact hepatocytes. J Biol Chem. 1990 Jun 5;265(16):9214–9220. [PubMed] [Google Scholar]
  31. Skorin C., Necochea C., Johow V., Soto U., Grau A. M., Bremer J., Leighton F. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J. 1992 Jan 15;281(Pt 2):561–567. doi: 10.1042/bj2810561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vamecq J. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids. Biochem J. 1987 Feb 1;241(3):783–791. doi: 10.1042/bj2410783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang L., Brady P. S., Brady L. J. Turnover of carnitine palmitoyltransferase mRNA and protein in H4IIE cells. Effect of cyclic AMP and insulin. Biochem J. 1989 Nov 1;263(3):703–708. doi: 10.1042/bj2630703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woeltje K. F., Esser V., Weis B. C., Sen A., Cox W. F., McPhaul M. J., Slaughter C. A., Foster D. W., McGarry J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase II. J Biol Chem. 1990 Jun 25;265(18):10720–10725. [PubMed] [Google Scholar]
  35. Zammit V. A. Carnitine acyltransferases in the physiological setting: the liver. Biochem Soc Trans. 1986 Aug;14(4):676–679. doi: 10.1042/bst0140676. [DOI] [PubMed] [Google Scholar]
  36. Zammit V. A. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Prog Lipid Res. 1984;23(1):39–67. doi: 10.1016/0163-7827(84)90005-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES