Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 15;287(Pt 2):509–514. doi: 10.1042/bj2870509

Iron and aluminium in relation to brain ferritin in normal individuals and Alzheimer's-disease and chronic renal-dialysis patients.

D J Dedman 1, A Treffry 1, J M Candy 1, G A Taylor 1, C M Morris 1, C A Bloxham 1, R H Perry 1, J A Edwardson 1, P M Harrison 1
PMCID: PMC1133194  PMID: 1445209

Abstract

Ferritin has been isolated and its subunit composition, iron and aluminium content determined in the cerebral cortex and cerebellum of normal individuals and in the cerebral cortex of Alzheimer's-disease and renal-dialysis patients. An e.l.i.s.a. for ferritin has been developed and the ferritin, non-haem iron and aluminium content of the parietal cortex were determined in normal individuals and Alzheimer's-disease patients. It was found that ferritin from the cerebral cortex and cerebellum of normal individuals had a high H-subunit content, similar to that of heart ferritin. The subunit composition of ferritin isolated from the cerebral cortex was not significantly altered in Alzheimer's-disease or renal-dialysis patients. Ferritin from the cerebral cortex of normal individuals had only approx. 1500 atoms of iron per molecule and the iron content of ferritin was not significantly changed in Alzheimer's-disease or renal-dialysis patients. Ferritin isolated from the cerebral cortex of normal, Alzheimer's-disease and renal-dialysis patients had less than 9 atoms of aluminium per molecule. The failure to find increased concentrations of aluminium associated with ferritin in dialysis patients, who had markedly increased concentrations of aluminium in the cerebral cortex, shows that aluminium does not accumulate in ferritin in vivo. This has important implications for the toxicity of aluminium, since it implies that cells are unable to detoxify aluminium by the same mechanism as that available for iron. Comparison of the concentrations of ferritin, aluminium and iron in the parietal cortex from normal and Alzheimer's-disease patients showed that, whereas the concentration of aluminium was not increased, both ferritin and iron were significantly increased in Alzheimer's disease.

Full text

PDF
509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arosio P., Adelman T. G., Drysdale J. W. On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem. 1978 Jun 25;253(12):4451–4458. [PubMed] [Google Scholar]
  2. Boyd D., Vecoli C., Belcher D. M., Jain S. K., Drysdale J. W. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem. 1985 Sep 25;260(21):11755–11761. [PubMed] [Google Scholar]
  3. Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem. 1971 Apr;40(2):450–458. doi: 10.1016/0003-2697(71)90405-2. [DOI] [PubMed] [Google Scholar]
  4. Caskey J. H., Jones C., Miller Y. E., Seligman P. A. Human ferritin gene is assigned to chromosome 19. Proc Natl Acad Sci U S A. 1983 Jan;80(2):482–486. doi: 10.1073/pnas.80.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connor J. R., Menzies S. L., St Martin S. M., Mufson E. J. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res. 1990 Dec;27(4):595–611. doi: 10.1002/jnr.490270421. [DOI] [PubMed] [Google Scholar]
  6. Crapper D. R., Krishnan S. S., Quittkat S. Aluminium, neurofibrillary degeneration and Alzheimer's disease. Brain. 1976 Mar;99(1):67–80. doi: 10.1093/brain/99.1.67. [DOI] [PubMed] [Google Scholar]
  7. Cruickshank J. K., Beevers D. G. Epidemiology of hypertension: blood pressure in blacks and whites. Clin Sci (Lond) 1982 Jan;62(1):1–6. doi: 10.1042/cs0620001. [DOI] [PubMed] [Google Scholar]
  8. DRYSDALE J. W., MUNRO H. N. SMALL-SCALE ISOLATION OF FERRITIN FOR THE ASSAY OF THE INCORPORATION OF 14C-LABELLED AMINO ACIDS. Biochem J. 1965 Jun;95:851–858. doi: 10.1042/bj0950851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dexter D. T., Carayon A., Javoy-Agid F., Agid Y., Wells F. R., Daniel S. E., Lees A. J., Jenner P., Marsden C. D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain. 1991 Aug;114(Pt 4):1953–1975. doi: 10.1093/brain/114.4.1953. [DOI] [PubMed] [Google Scholar]
  10. Dexter D. T., Carayon A., Vidailhet M., Ruberg M., Agid F., Agid Y., Lees A. J., Wells F. R., Jenner P., Marsden C. D. Decreased ferritin levels in brain in Parkinson's disease. J Neurochem. 1990 Jul;55(1):16–20. doi: 10.1111/j.1471-4159.1990.tb08814.x. [DOI] [PubMed] [Google Scholar]
  11. Dexter D. T., Wells F. R., Agid F., Agid Y., Lees A. J., Jenner P., Marsden C. D. Increased nigral iron content in postmortem parkinsonian brain. Lancet. 1987 Nov 21;2(8569):1219–1220. doi: 10.1016/s0140-6736(87)91361-4. [DOI] [PubMed] [Google Scholar]
  12. Fleming J., Joshi J. G. Ferritin: isolation of aluminum-ferritin complex from brain. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7866–7870. doi: 10.1073/pnas.84.22.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  14. Grundke-Iqbal I., Fleming J., Tung Y. C., Lassmann H., Iqbal K., Joshi J. G. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol. 1990;81(2):105–110. doi: 10.1007/BF00334497. [DOI] [PubMed] [Google Scholar]
  15. HALLGREN B., SOURANDER P. The effect of age on the non-haemin iron in the human brain. J Neurochem. 1958 Oct;3(1):41–51. doi: 10.1111/j.1471-4159.1958.tb12607.x. [DOI] [PubMed] [Google Scholar]
  16. Halliwell B. Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke? Acta Neurol Scand Suppl. 1989;126:23–33. doi: 10.1111/j.1600-0404.1989.tb01779.x. [DOI] [PubMed] [Google Scholar]
  17. Kaneko Y., Kitamoto T., Tateishi J., Yamaguchi K. Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol. 1989;79(2):129–136. doi: 10.1007/BF00294369. [DOI] [PubMed] [Google Scholar]
  18. Klausner R. D., Harford J. B. cis-trans models for post-transcriptional gene regulation. Science. 1989 Nov 17;246(4932):870–872. doi: 10.1126/science.2683086. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  21. Linder M. C., Munro H. N. Assay of tissue ferritin. Anal Biochem. 1972 Jul;48(1):266–278. doi: 10.1016/0003-2697(72)90189-3. [DOI] [PubMed] [Google Scholar]
  22. McDermott J. R., Smith A. I., Iqbal K., Wisniewski H. M. Brain aluminum in aging and Alzheimer disease. Neurology. 1979 Jun;29(6):809–814. doi: 10.1212/wnl.29.6.809. [DOI] [PubMed] [Google Scholar]
  23. McGeer P. L., Itagaki S., Boyes B. E., McGeer E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988 Aug;38(8):1285–1291. doi: 10.1212/wnl.38.8.1285. [DOI] [PubMed] [Google Scholar]
  24. Morris C. M., Candy J. M., Oakley A. E., Taylor G. A., Mountfort S., Bishop H., Ward M. K., Bloxham C. A., Edwardson J. A. Comparison of the regional distribution of transferrin receptors and aluminium in the forebrain of chronic renal dialysis patients. J Neurol Sci. 1989 Dec;94(1-3):295–306. doi: 10.1016/0022-510x(89)90238-4. [DOI] [PubMed] [Google Scholar]
  25. Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  26. Treffry A., Harrison P. M., Cleton M. I., de Bruijn W. C., Mann S. A note on the composition and properties of ferritin iron cores. J Inorg Biochem. 1987 Sep;31(1):1–6. doi: 10.1016/0162-0134(87)85001-8. [DOI] [PubMed] [Google Scholar]
  27. Trefry A., Harrison P. M. Incorporation and release of inorganic phosphate in horse spleen ferritin. Biochem J. 1978 May 1;171(2):313–320. doi: 10.1042/bj1710313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Worwood M., Brook J. D., Cragg S. J., Hellkuhl B., Jones B. M., Perera P., Roberts S. H., Shaw D. J. Assignment of human ferritin genes to chromosomes 11 and 19q13.3----19qter. Hum Genet. 1985;69(4):371–374. doi: 10.1007/BF00291657. [DOI] [PubMed] [Google Scholar]
  29. Xu B., Chasteen N. D. Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formation. J Biol Chem. 1991 Oct 25;266(30):19965–19970. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES