Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 15;287(Pt 2):555–559. doi: 10.1042/bj2870555

Interaction of GTPase-activating protein with p21ras, measured using a continuous assay for inorganic phosphate release.

M R Webb 1, J L Hunter 1
PMCID: PMC1133200  PMID: 1445214

Abstract

The mechanism of GTPase-activating protein (GAP) activation of p21ras GTP hydrolysis has been investigated by measuring the kinetics of release of Pi during the hydrolysis. The measurement uses a continuous spectroscopic assay for Pi, based on a guanosine analogue, 2-amino-6-mercapto-7-methylpurine ribonucleoside, as substrate for purine nucleoside phosphorylase [Webb, M.R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 4884-4887]. This phosphorolysis gives an absorbance increase at 360 nm, so that when the reaction is coupled to GTP hydrolysis, the change in absorbance gives the total amount of Pi released from the p21ras. The rate of the absorbance increase gives the GTPase activity. This provides a non-radioactive method of determining p21ras concentration and GAP activity. It was used to determine the interaction of GAP with wild-type p21ras and two mutants (Leu-61/Ser-186 and Asp-12), all in the GTP (or guanosine 5'-[ beta gamma-imido]triphosphate) form. The Leu-61/Ser-186 mutant binds 10-fold tighter than does the wild-type protein. The Asp-12 mutant binds to GAP with the same affinity as the wild-type protein. A novel GTPase activity was characterized whereby the EDTA-induced nucleotide release and GAP-activated cleavage of bound GTP leads to steady-state turnover of GTP hydrolysis. An assay for GAP is described based on this activity.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonny B., Chardin P., Roux M., Chabre M. GTP hydrolysis mechanisms in ras p21 and in the ras-GAP complex studied by fluorescence measurements on tryptophan mutants. Biochemistry. 1991 Aug 27;30(34):8287–8295. doi: 10.1021/bi00098a002. [DOI] [PubMed] [Google Scholar]
  2. Gibbs J. B., Schaber M. D., Allard W. J., Sigal I. S., Scolnick E. M. Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5026–5030. doi: 10.1073/pnas.85.14.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hall A., Self A. J. The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras. J Biol Chem. 1986 Aug 25;261(24):10963–10965. [PubMed] [Google Scholar]
  4. Hall A. ras and GAP--who's controlling whom? Cell. 1990 Jun 15;61(6):921–923. doi: 10.1016/0092-8674(90)90054-i. [DOI] [PubMed] [Google Scholar]
  5. Hart P. A., Marshall C. J. Amino acid 61 is a determinant of sensitivity of rap proteins to the ras GTPase activating protein. Oncogene. 1990 Jul;5(7):1099–1101. [PubMed] [Google Scholar]
  6. Hoshino M., Clanton D. J., Shih T. Y., Kawakita M., Hattori S. Interaction of ras oncogene product p21 with guanine nucleotides. J Biochem. 1987 Sep;102(3):503–511. doi: 10.1093/oxfordjournals.jbchem.a122082. [DOI] [PubMed] [Google Scholar]
  7. John J., Sohmen R., Feuerstein J., Linke R., Wittinghofer A., Goody R. S. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry. 1990 Jun 26;29(25):6058–6065. doi: 10.1021/bi00477a025. [DOI] [PubMed] [Google Scholar]
  8. Krengel U., Schlichting I., Scherer A., Schumann R., Frech M., John J., Kabsch W., Pai E. F., Wittinghofer A. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell. 1990 Aug 10;62(3):539–548. doi: 10.1016/0092-8674(90)90018-a. [DOI] [PubMed] [Google Scholar]
  9. Manne V., Yamazaki S., Kung H. F. Guanosine nucleotide binding by highly purified Ha-ras-encoded p21 protein produced in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6953–6957. doi: 10.1073/pnas.81.22.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marshall M. S., Hill W. S., Ng A. S., Vogel U. S., Schaber M. D., Scolnick E. M., Dixon R. A., Sigal I. S., Gibbs J. B. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity. EMBO J. 1989 Apr;8(4):1105–1110. doi: 10.1002/j.1460-2075.1989.tb03480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Neal S. E., Eccleston J. F., Hall A., Webb M. R. Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism. J Biol Chem. 1988 Dec 25;263(36):19718–19722. [PubMed] [Google Scholar]
  12. Neal S. E., Eccleston J. F., Webb M. R. Hydrolysis of GTP by p21NRAS, the NRAS protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc Natl Acad Sci U S A. 1990 May;87(9):3562–3565. doi: 10.1073/pnas.87.9.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reinstein J., Schlichting I., Frech M., Goody R. S., Wittinghofer A. p21 with a phenylalanine 28----leucine mutation reacts normally with the GTPase activating protein GAP but nevertheless has transforming properties. J Biol Chem. 1991 Sep 15;266(26):17700–17706. [PubMed] [Google Scholar]
  14. Schlichting I., Almo S. C., Rapp G., Wilson K., Petratos K., Lentfer A., Wittinghofer A., Kabsch W., Pai E. F., Petsko G. A. Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature. 1990 May 24;345(6273):309–315. doi: 10.1038/345309a0. [DOI] [PubMed] [Google Scholar]
  15. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  16. Trahey M., McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987 Oct 23;238(4826):542–545. doi: 10.1126/science.2821624. [DOI] [PubMed] [Google Scholar]
  17. Webb M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4884–4887. doi: 10.1073/pnas.89.11.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. de Vos A. M., Tong L., Milburn M. V., Matias P. M., Jancarik J., Noguchi S., Nishimura S., Miura K., Ohtsuka E., Kim S. H. Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science. 1988 Feb 19;239(4842):888–893. doi: 10.1126/science.2448879. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES