Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 15;287(Pt 2):657–661. doi: 10.1042/bj2870657

Lysosomal cysteine endopeptidases mediate interleukin 1-stimulated cartilage proteoglycan degradation.

D J Buttle 1, J Saklatvala 1
PMCID: PMC1133216  PMID: 1445226

Abstract

The peptidyl diazomethane inactivator of cysteine endopeptidases, benzyloxycarbonyl-Tyr-Ala-CHN2, was tested as an inhibitor of interleukin 1 alpha-stimulated release of proteoglycan from bovine nasal septum cartilage explants. Like the previously tested epoxidyl peptide proinhibitor trans-epoxysuccinyl-leucylamido-(3-methyl)butane ethyl ester, it proved to be an effective inhibitor of proteoglycan release from cartilage, with significant inhibition at a concentration of 1 microM. The inhibition did not seem to be due to a general toxic effect. The rates of inactivation of the bovine cysteine endopeptidases by the peptidyl diazomethane, the epoxidyl peptide proinhibitor and its active form were determined. Benzyloxycarbonyl-Tyr-Ala-CHN2 proved to be a rapid inactivator of cathepsins L, S and B, but reacted much more slowly with cathepsin H and calpain. Thus it would appear that the latter two enzymes are not implicated in proteoglycan release in our test system. The peptidyl diazomethane and epoxidyl peptide proinhibitor (above) were also tested for their effects on three other interleukin 1-mediated cellular events, namely epidermal growth factor receptor transmodulation, and interleukin 6 and prostaglandin E2 production. In all cases the inactivators did not interfere with the response to interleukin 1 in human gingival fibroblasts. We conclude that one or more of the lysosomal cysteine endopeptidases cathepsins B, L and S mediate interleukin 1-stimulated cartilage proteoglycan degradation without affecting signal transduction.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bird T. A., Saklatvala J. Down-modulation of epidermal growth factor receptor affinity in fibroblasts treated with interleukin 1 or tumor necrosis factor is associated with phosphorylation at a site other than threonine 654. J Biol Chem. 1990 Jan 5;265(1):235–240. [PubMed] [Google Scholar]
  3. Bird T. A., Saklatvala J. IL-1 and TNF transmodulate epidermal growth factor receptors by a protein kinase C-independent mechanism. J Immunol. 1989 Jan 1;142(1):126–133. [PubMed] [Google Scholar]
  4. Brömme D., Steinert A., Friebe S., Fittkau S., Wiederanders B., Kirschke H. The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. Biochem J. 1989 Dec 1;264(2):475–481. doi: 10.1042/bj2640475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buttle D. J., Saklatvala J., Tamai M., Barrett A. J. Inhibition of interleukin 1-stimulated cartilage proteoglycan degradation by a lipophilic inactivator of cysteine endopeptidases. Biochem J. 1992 Jan 1;281(Pt 1):175–177. doi: 10.1042/bj2810175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elias J. A., Lentz V. IL-1 and tumor necrosis factor synergistically stimulate fibroblast IL-6 production and stabilize IL-6 messenger RNA. J Immunol. 1990 Jul 1;145(1):161–166. [PubMed] [Google Scholar]
  8. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  9. Kirschke H., Wiederanders B., Brömme D., Rinne A. Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochem J. 1989 Dec 1;264(2):467–473. doi: 10.1042/bj2640467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kobayashi H., Schmitt M., Goretzki L., Chucholowski N., Calvete J., Kramer M., Günzler W. A., Jänicke F., Graeff H. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J Biol Chem. 1991 Mar 15;266(8):5147–5152. [PubMed] [Google Scholar]
  11. LACK C. H., ROGERS H. J. Action of plasmin on cartilage. Nature. 1958 Oct 4;182(4640):948–949. doi: 10.1038/182948a0. [DOI] [PubMed] [Google Scholar]
  12. Mason R. W., Green G. D., Barrett A. J. Human liver cathepsin L. Biochem J. 1985 Feb 15;226(1):233–241. doi: 10.1042/bj2260233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mason R. W. Species variants of cathepsin L and their immunological identification. Biochem J. 1986 Nov 15;240(1):285–288. doi: 10.1042/bj2400285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mizel S. B. How does interleukin 1 activate cells? Cyclic AMP and interleukin 1 signal transduction. Immunol Today. 1990 Nov;11(11):390–391. doi: 10.1016/0167-5699(90)90154-2. [DOI] [PubMed] [Google Scholar]
  16. Muegge K., Durum S. K. Cytokines and transcription factors. Cytokine. 1990 Jan;2(1):1–8. doi: 10.1016/1043-4666(90)90036-s. [DOI] [PubMed] [Google Scholar]
  17. Murphy G., Ward R., Gavrilovic J., Atkinson S. Physiological mechanisms for metalloproteinase activation. Matrix Suppl. 1992;1:224–230. [PubMed] [Google Scholar]
  18. Nguyen Q., Mort J. S., Roughley P. J. Cartilage proteoglycan aggregate is degraded more extensively by cathepsin L than by cathepsin B. Biochem J. 1990 Mar 1;266(2):569–573. [PMC free article] [PubMed] [Google Scholar]
  19. O'Neill L. A., Bird T. A., Saklatvala J. How does interleukin 1 activate cells? Interleukin 1 signal transduction. Immunol Today. 1990 Nov;11(11):392–394. doi: 10.1016/0167-5699(90)90155-3. [DOI] [PubMed] [Google Scholar]
  20. Okada Y., Harris E. D., Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988 Sep 15;254(3):731–741. doi: 10.1042/bj2540731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parkes C., Kembhavi A. A., Barrett A. J. Calpain inhibition by peptide epoxides. Biochem J. 1985 Sep 1;230(2):509–516. doi: 10.1042/bj2300509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rawlings N. D., Barrett A. J. FLUSYS: a software package for the collection and analysis of kinetic and scanning data from Perkin-Elmer fluorimeters. Comput Appl Biosci. 1990 Apr;6(2):118–119. doi: 10.1093/bioinformatics/6.2.118. [DOI] [PubMed] [Google Scholar]
  23. Rich D. H., Brown M. A., Barrett A. J. Purification of cathepsin B by a new form of affinity chromatography. Biochem J. 1986 May 1;235(3):731–734. doi: 10.1042/bj2350731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwartz W. N., Barrett A. J. Human cathepsin H. Biochem J. 1980 Nov 1;191(2):487–497. doi: 10.1042/bj1910487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taktak Y. S., Selkirk S., Bristow A. F., Carpenter A., Ball C., Rafferty B., Poole S. Assay of pyrogens by interleukin-6 release from monocytic cell lines. J Pharm Pharmacol. 1991 Aug;43(8):578–582. doi: 10.1111/j.2042-7158.1991.tb03540.x. [DOI] [PubMed] [Google Scholar]
  26. Wilcox D., Mason R. W. Labelling of cysteine proteinases in purified lysosomes. Biochem Soc Trans. 1989 Dec;17(6):1080–1081. doi: 10.1042/bst0171080. [DOI] [PubMed] [Google Scholar]
  27. Yamamoto D., Matsumoto K., Ohishi H., Ishida T., Inoue M., Kitamura K., Hanada K. The importance of Val-157 hydrophobic interaction for papain inhibitory activity of an epoxysuccinyl amino acid derivative. A structure-activity relationship based on the crystal structure of the papain-E-64-c complex. FEBS Lett. 1990 Apr 9;263(1):134–136. doi: 10.1016/0014-5793(90)80722-u. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES