Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):189–194. doi: 10.1042/bj2620189

Isolation of a human hepatic 60 kDa aspartylglucosaminidase consisting of three non-identical polypeptides.

M Baumann 1, L Peltonen 1, P Aula 1, N Kalkkinen 1
PMCID: PMC1133246  PMID: 2818562

Abstract

We have characterized the properties of human aspartylglucosaminidase (EC 3.5.1.26), the lysosomal enzyme which is deficient in the human inherited disease aspartylglucosaminuria. The purification procedure from human liver included affinity chromatography, gel filtration, strong-anion- and strong-cation-exchange h.p.l.c., chromatofocusing and reverse-phase h.p.l.c. In a denaturing SDS/polyacrylamide-gel electrophoresis, the 6600-fold purified enzyme was shown to be composed of three non-identical inactive polypeptide chains of molecular masses 24, 18 and 17 kDa. In a native polyacrylamide-gel electrophoresis, these polypeptide chains ran as one active enzyme complex. As judged from the elution position of the native enzyme in a Biogel P-100 gel filtration, the approximate molecular mass of this complex was 60 kDa. The enzyme had a pI of 5.7, a pH optimum at 6, of 0.48 mM and a specific activity of 200,000 nkat for the substrate 2-acetamido-1-beta-(L-aspartamido)-1,2-dideoxy-D-glucose. The enzyme showed a 57% loss of activity at 60 degrees C after 45 h but was practically inactive after incubation at 72 degrees C for a few minutes. The molecular structure, Km and specific activity as well as the thermostability of the enzyme described here are different from those reported previously for human aspartylglucosaminidase.

Full text

PDF
189

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allington W. B., Cordry A. L., McCullough G. A., Mitchell D. E., Nelson J. W. Electrophoretic concentration of macromolecules. Anal Biochem. 1978 Mar;85(1):188–196. doi: 10.1016/0003-2697(78)90289-0. [DOI] [PubMed] [Google Scholar]
  2. Aula P., Astrin K. H., Francke U., Desnick R. J. Assignment of the structural gene encoding human aspartylglucosaminidase to the long arm of chromosome 4 (4q21----4qter). Am J Hum Genet. 1984 Nov;36(6):1215–1224. [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Conchie J., Strachan I. Distribution, purification and properties of 1-aspartamido-beta-N-acetylglucosamine amidohydrolase. Biochem J. 1969 Dec;115(4):709–715. doi: 10.1042/bj1150709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dugal B. Effect of different compounds on 1-aspartamido-beta-N-acetylglucosamine amidohydrolase from human liver. Biochem J. 1978 Jun 1;171(3):799–802. doi: 10.1042/bj1710799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dugal B. Measurement of 1-aspartamido-beta-N-acetylglucosamine amidohydrolase activity in human tissues. Biochem J. 1977 Apr 1;163(1):9–14. doi: 10.1042/bj1630009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dugal B., Stromme J. Purification and some properties of 1-aspartamido-beta-N-acetylglucosamine amidohydrolase from human liver. Biochem J. 1977 Sep 1;165(3):497–502. doi: 10.1042/bj1650497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hasilik A., von Figura K., Conzelmann E., Nehrkorn H., Sandhoff K. Lysosomal enzyme precursors in human fibroblasts. Activation of cathepsin D precursor in vitro and activity of beta-hexosaminidase A precursor towards ganglioside GM2. Eur J Biochem. 1982 Jul;125(2):317–321. doi: 10.1111/j.1432-1033.1982.tb06685.x. [DOI] [PubMed] [Google Scholar]
  9. Kalkkinen N., Jörnvall H., Söderlund H., Käriäinen L. Analysis of Semliki-Forest-virus structural proteins to illustrate polyprotein processing of alpha viruses. Eur J Biochem. 1980;108(1):31–37. doi: 10.1111/j.1432-1033.1980.tb04692.x. [DOI] [PubMed] [Google Scholar]
  10. Lundblad A., Masson P. K., Nordén N. E. Structural determination of three glycoasparagines isolated from the urine of a patient with aspartylglycosaminuria. Eur J Biochem. 1976 Aug 1;67(1):209–214. doi: 10.1111/j.1432-1033.1976.tb10651.x. [DOI] [PubMed] [Google Scholar]
  11. Mahadevan S., Tappel A. L. Beta-aspartylglucosylamine amido hydrolase of rat liver and kidney. J Biol Chem. 1967 Oct 25;242(20):4568–4576. [PubMed] [Google Scholar]
  12. Makino M., Kojima T., Yamashina I. Enzymatic cleavage of glycopeptides. Biochem Biophys Res Commun. 1966 Sep 22;24(6):961–966. doi: 10.1016/0006-291x(66)90344-5. [DOI] [PubMed] [Google Scholar]
  13. Maury C. P. Accumulation of glycoprotein-derived metabolites in neural and visceral tissue in aspartylglycosaminuria. J Lab Clin Med. 1980 Nov;96(5):838–844. [PubMed] [Google Scholar]
  14. McGovern M. M., Aula P., Desnick R. J. Purification and properties of human hepatic aspartylglucosaminidase. J Biol Chem. 1983 Sep 10;258(17):10743–10747. [PubMed] [Google Scholar]
  15. Palo J., Pollitt R. J., Pretty K. M., Savolainen H. Glycoasparagine metabolites in patients with aspartylglycosaminuria: comparison between English and Finnish patients with special reference to storage materials. Clin Chim Acta. 1973 Aug 17;47(1):69–74. doi: 10.1016/0009-8981(73)90061-2. [DOI] [PubMed] [Google Scholar]
  16. Palo J., Riekkinen P., Arstila A. U., Autio S., Kivimäki T. Aspartylglucosaminuria. II. Biochemical studies on brain, liver, kidney and spleen. Acta Neuropathol. 1972;20(3):217–224. doi: 10.1007/BF00686903. [DOI] [PubMed] [Google Scholar]
  17. Palo J., Riekkinen P., Arstila A., Autio S. Biochemical and fine structural studies on brain and liver biopsies in aspartylglucosaminuria. Neurology. 1971 Dec;21(12):1198–1204. doi: 10.1212/wnl.21.12.1198. [DOI] [PubMed] [Google Scholar]
  18. Pollitt R. J., Jenner F. A., Merskey H. Aspartylglycosaminuria. An inborn error of metabolism associated with mental defect. Lancet. 1968 Aug 3;2(7562):253–255. doi: 10.1016/s0140-6736(68)92355-6. [DOI] [PubMed] [Google Scholar]
  19. Savolainen H. Isolation of the liver N-aspartyl-beta-glucosaminidase in aspartylglucosaminuria. Biochem J. 1976 Mar 1;153(3):749–750. doi: 10.1042/bj1530749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tunón P., Johansson K. E. Yet another improved silver staining method for the detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 1984 May;9(2):171–179. doi: 10.1016/0165-022x(84)90008-3. [DOI] [PubMed] [Google Scholar]
  21. Verheijen F. W., Palmeri S., Hoogeveen A. T., Galjaard H. Human placental neuraminidase. Activation, stabilization and association with beta-galactosidase and its protective protein. Eur J Biochem. 1985 Jun 3;149(2):315–321. doi: 10.1111/j.1432-1033.1985.tb08928.x. [DOI] [PubMed] [Google Scholar]
  22. von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES