Abstract
The rate of the reaction of Astacus leptodactylus methaemocyanin with NO follows the Henderson-Hasselbalch equation with a pKa of 5.85, suggesting that one imidazole ligand of Cu was exchanged for NO. The reaction is blocked by F- as a bridging ligand. The same imidazole residue might be responsible for the decomposition of nitrosylhaemocyanin, [Cu1NO+CuII], with an unlocated binding site for NO, into methaemocyanin and NO, as the rate increase with pH. NO could react preferentially with CuA of Helix pomatia methaemocyanin, CuA'IICuBII, as it possibly has only two histidine ligands instead of the three of CuA in Astacus haemocyanin. This difference might explain the higher formation rate and the much greater stability of Helix nitrosylhaemocyanin. The fast reaction is governed by a pKa of 6.80, probably of a bridging mu-aquo ligand. With F- or a mu-hydroxo bridging ligand a low reaction rate was still observed, in contrast with Astacus methaemocyanin. Helix nitrosylhaemocyanin was transformed by N3- into methaemocyanin with the liberation of N2 and N2O. This methaemocyanin could almost quantitatively be regenerated with H2O2. Helix nitrosylhaemocyanin was only partially regenerated by a direct treatment with H2O2 and almost quantitatively by HONH2 in a similar fairly fast reaction, followed by a much slower one.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Drexel R., Siegmund S., Schneider H. J., Linzen B., Gielens C., Préaux G., Lontie R., Kellermann J., Lottspeich F. Complete amino-acid sequence of a functional unit from a molluscan hemocyanin (Helix pomatia). Biol Chem Hoppe Seyler. 1987 Jun;368(6):617–635. doi: 10.1515/bchm3.1987.368.1.617. [DOI] [PubMed] [Google Scholar]
- Gielens C., Préaux G., Lontie R. Limited trypsinolysis of beta-haemocyanin of Helix pomatia. Characterization of the fragments and heterogeneity of the copper groups by circular dichroism. Eur J Biochem. 1975 Dec 1;60(1):271–280. doi: 10.1111/j.1432-1033.1975.tb21000.x. [DOI] [PubMed] [Google Scholar]
- Gielens C., Verschueren L. J., Préaux G., Lontie R. Fragmentation of crystalline beta-haemocyanin of Helix pomatia with plasmin and trypsin. Location of the fragments in the polypeptide chain. Eur J Biochem. 1980 Feb;103(3):463–470. doi: 10.1111/j.1432-1033.1980.tb05970.x. [DOI] [PubMed] [Google Scholar]
- Gorren A. C., de Boer E., Wever R. The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. Biochim Biophys Acta. 1987 Nov 5;916(1):38–47. doi: 10.1016/0167-4838(87)90208-1. [DOI] [PubMed] [Google Scholar]
- HEIRWEGH K., BORGINON H., LONTIE R. Separation and absorption spectra of alpha- and beta-haemocyanin of Helix pomatia. Biochim Biophys Acta. 1961 Apr 15;48:517–526. doi: 10.1016/0006-3002(61)90049-x. [DOI] [PubMed] [Google Scholar]
- Huber M., Hintermann G., Lerch K. Primary structure of tyrosinase from Streptomyces glaucescens. Biochemistry. 1985 Oct 22;24(22):6038–6044. doi: 10.1021/bi00343a003. [DOI] [PubMed] [Google Scholar]
- Kwon B. S., Wakulchik M., Haq A. K., Halaban R., Kestler D. Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1301–1309. doi: 10.1016/s0006-291x(88)81370-6. [DOI] [PubMed] [Google Scholar]
- Land E. J., Prütz W. A. Reaction of azide radicals with amino acids and proteins. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Jul;36(1):75–83. doi: 10.1080/09553007914550831. [DOI] [PubMed] [Google Scholar]
- Lang W. H. cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain. Biochemistry. 1988 Sep 20;27(19):7276–7282. doi: 10.1021/bi00419a015. [DOI] [PubMed] [Google Scholar]
- Linzen B., Soeter N. M., Riggs A. F., Schneider H. J., Schartau W., Moore M. D., Yokota E., Behrens P. Q., Nakashima H., Takagi T. The structure of arthropod hemocyanins. Science. 1985 Aug 9;229(4713):519–524. doi: 10.1126/science.4023698. [DOI] [PubMed] [Google Scholar]
- Prütz W. A., Mönig H., Butler J., Land E. J. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys. 1985 Nov 15;243(1):125–134. doi: 10.1016/0003-9861(85)90780-5. [DOI] [PubMed] [Google Scholar]
- Shibahara S., Tomita Y., Sakakura T., Nager C., Chaudhuri B., Müller R. Cloning and expression of cDNA encoding mouse tyrosinase. Nucleic Acids Res. 1986 Mar 25;14(6):2413–2427. doi: 10.1093/nar/14.6.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tahon J. P., Van Hoof D., Vinckier C., Witters R., De Ley M., Lontie R. The reaction of nitrite with the haemocyanin of Astacus leptodactylus. Biochem J. 1988 Feb 1;249(3):891–896. doi: 10.1042/bj2490891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uiterkamp A. J.M.S. Monomer and magnetic dipole-coupled Cu(2+) EPR signals in nitrosylhemocyanin. FEBS Lett. 1972 Jan 15;20(1):93–96. doi: 10.1016/0014-5793(72)80025-5. [DOI] [PubMed] [Google Scholar]
- Van Hoof D., Witters R., Lontie R. The reaction of hydroxyurea with oxyhaemocyanin and methaemocyanin of the crayfish Astacus leptodactylus and the snail Helix pomatia. Biochem J. 1988 Sep 1;254(2):605–607. doi: 10.1042/bj2540605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verplaetse J., Van Tornout P., Defreyn G., Witters R., Lontie R. The reaction of nitrogen monoxide and of nitrite with deoxyhaemocyanin and methaemocyanin of Helix pomatia. Eur J Biochem. 1979 Apr 2;95(2):327–331. doi: 10.1111/j.1432-1033.1979.tb12969.x. [DOI] [PubMed] [Google Scholar]
- Witters R., Lontie R. The formation of Helix pomatia methaemocyanin accelerated by azide and fluoride. FEBS Lett. 1975 Dec 15;60(2):400–403. doi: 10.1016/0014-5793(75)80758-7. [DOI] [PubMed] [Google Scholar]
- Wood P. M. The potential diagram for oxygen at pH 7. Biochem J. 1988 Jul 1;253(1):287–289. doi: 10.1042/bj2530287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Deen H., Hoving H. Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: single and double oxidation of the active site. Biochemistry. 1977 Aug 9;16(16):3519–3525. doi: 10.1021/bi00635a004. [DOI] [PubMed] [Google Scholar]
