Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):277–284. doi: 10.1042/bj2620277

Differential effects of leupeptin, monensin and colchicine on ligand degradation mediated by the two asialoglycoprotein receptor pathways in isolated rat hepatocytes.

B L Clarke 1, P H Weigel 1
PMCID: PMC1133258  PMID: 2554889

Abstract

We have shown that degradation of asialo-orosomucoid (ASOR) in isolated rat hepatocytes occurs by two different intracellular pathways [Clarke, Oka & Weigel (1987) J. Biol. Chem. 262, 17384-17392] mediated by two subpopulations of cell surface galactosyl (Gal) receptors, designated State 1 or State 2 receptors. In the present study, several inhibitors were tested for their effects on ligand degradation by the State 1 or State 2 pathway. Leupeptin, monensin and chloroquine completely inhibited degradation of 125I-labelled ASOR in both pathways. Dose-response studies showed, however, that the State 2 pathway was more sensitive to leupeptin or monensin than the State 1 pathway. No differences were observed with chloroquine. For example, the onset of inhibition in the State 2 and State 1 pathways occurred at about 0.05 and 0.3 microM-leupeptin respectively, a 6-fold difference. At 3.5 microM-monensin, 125I-ASOR degradation in the State 2 pathway was completely blocked, whereas degradation in the State 1 pathway was essentially unaffected. Colchicine was observed to give the largest differential sensitivity between the two pathways. The State 2 degradation pathway was about 30-fold more sensitive to colchicine than the State 1 pathway. Lumicolchicine had no affect. The onset of inhibition of the rate of 125I-ASOR degradation in the State 2 and State 1 pathways occurred at approximately 0.1 and 3.0 microM-colchicine respectively. At very high concentrations (greater than 0.1 mM), the State 1 pathway could be completely inhibited. We conclude that intracellular 125I-ASOR processing or delivery to degradative compartments in both the State 1 and State 2 Gal receptor pathways requires low pH. Ligand delivery to the degradative compartment does not require microtubules in the State 1 pathway, consistent with the very rapid onset of degradation in this pathway. The State 2 degradation pathway does require microtubules.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  2. Aulinskas T. H., Coetzee G. A., van der Westhuyzen D. R. Degradation of apolipoprotein B of low density lipoprotein by cultured bovine smooth muscle cells. Accumulation of intermediates in the presence of protease inhibitors. Biochim Biophys Acta. 1981 Feb 23;663(2):421–431. doi: 10.1016/0005-2760(81)90171-5. [DOI] [PubMed] [Google Scholar]
  3. Berg T., Ford T., Kindberg G., Blomhoff R., Drevon C. Intracellular degradation of asialoglycoproteins in hepatocytes starts in a subgroup of lysosomes. Exp Cell Res. 1985 Feb;156(2):570–574. doi: 10.1016/0014-4827(85)90565-8. [DOI] [PubMed] [Google Scholar]
  4. Berhanu P., Olefsky J. M., Tsai P., Thamm P., Saunders D., Brandenburg D. Internalization and molecular processing of insulin receptors in isolated rat adipocytes. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4069–4073. doi: 10.1073/pnas.79.13.4069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Clarke B. L., Oka J. A., Weigel P. H. Degradation of asialoglycoproteins mediated by the galactosyl receptor system in isolated hepatocytes. Evidence for two parallel pathways. J Biol Chem. 1987 Dec 25;262(36):17384–17392. [PubMed] [Google Scholar]
  7. Dautry-Varsat A., Ciechanover A., Lodish H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibbons I. R. Dynein ATPases as microtubule motors. J Biol Chem. 1988 Nov 5;263(31):15837–15840. [PubMed] [Google Scholar]
  9. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  10. Harford J., Bridges K., Ashwell G., Klausner R. D. Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes. A pH-mediated nonlysosomal event. J Biol Chem. 1983 Mar 10;258(5):3191–3197. [PubMed] [Google Scholar]
  11. Harford J., Klausner R. D., Ashwell G. Inhibition of the endocytic pathway for asialoglycoprotein catabolism. Biol Cell. 1984;51(2):173–179. doi: 10.1111/j.1768-322x.1984.tb00296.x. [DOI] [PubMed] [Google Scholar]
  12. Harford J., Wolkoff A. W., Ashwell G., Klausner R. D. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor. J Cell Biol. 1983 Jun;96(6):1824–1828. doi: 10.1083/jcb.96.6.1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herman B., Albertini D. F. A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J Cell Biol. 1984 Feb;98(2):565–576. doi: 10.1083/jcb.98.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herzig M. C., Weigel P. H. Synthesis and characterization of N-hydroxysuccinimide ester chemical affinity derivatives of asialoorosomucoid that covalently cross-link to galactosyl receptors on isolated rat hepatocytes. Biochemistry. 1989 Jan 24;28(2):600–610. doi: 10.1021/bi00428a028. [DOI] [PubMed] [Google Scholar]
  15. Kaplan J. Polypeptide-binding membrane receptors: analysis and classification. Science. 1981 Apr 3;212(4490):14–20. doi: 10.1126/science.6259730. [DOI] [PubMed] [Google Scholar]
  16. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marshall S. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors. J Biol Chem. 1985 Nov 5;260(25):13524–13531. [PubMed] [Google Scholar]
  18. Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McAbee D. D., Weigel P. H. ATP depletion causes a reversible redistribution and inactivation of a subpopulation of galactosyl receptors in isolated rat hepatocytes. J Biol Chem. 1987 Feb 15;262(5):1942–1945. [PubMed] [Google Scholar]
  20. McAbee D. D., Weigel P. H. ATP-dependent inactivation and reactivation of constitutively recycling galactosyl receptors in isolated rat hepatocytes. Biochemistry. 1988 Mar 22;27(6):2061–2069. doi: 10.1021/bi00406a037. [DOI] [PubMed] [Google Scholar]
  21. Oka J. A., Weigel P. H. Microtubule-depolymerizing agents inhibit asialo-orosomucoid delivery to lysosomes but not its endocytosis or degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1983 Dec 19;763(4):368–376. doi: 10.1016/0167-4889(83)90098-8. [DOI] [PubMed] [Google Scholar]
  22. Oka J. A., Weigel P. H. Monensin inhibits ligand dissociation only transiently and partially and distinguishes two galactosyl receptor pathways in isolated rat hepatocytes. J Cell Physiol. 1987 Nov;133(2):243-52, 257. doi: 10.1002/jcp.1041330207. [DOI] [PubMed] [Google Scholar]
  23. Oka J. A., Weigel P. H. Recycling of the asialoglycoprotein receptor in isolated rat hepatocytes. Dissociation of internalized ligand from receptor occurs in two kinetically and thermally distinguishable compartments. J Biol Chem. 1983 Sep 10;258(17):10253–10262. [PubMed] [Google Scholar]
  24. Planck S. R., Finch J. S., Magun B. E. Intracellular processing of epidermal growth factor. II. Intracellular cleavage of the COOH-terminal region of 125I-epidermal growth factor. J Biol Chem. 1984 Mar 10;259(5):3053–3057. [PubMed] [Google Scholar]
  25. Roth R. A. Bacitracin: an inhibitor of the insulin degrading activity of glutathione-insulin transhydrogenase. Biochem Biophys Res Commun. 1981 Jan 30;98(2):431–438. doi: 10.1016/0006-291x(81)90858-5. [DOI] [PubMed] [Google Scholar]
  26. Schmid S. L., Fuchs R., Male P., Mellman I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell. 1988 Jan 15;52(1):73–83. doi: 10.1016/0092-8674(88)90532-6. [DOI] [PubMed] [Google Scholar]
  27. Schwartz A. L., Bolognesi A., Fridovich S. E. Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells. J Cell Biol. 1984 Feb;98(2):732–738. doi: 10.1083/jcb.98.2.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schwartz A. L. The hepatic asialoglycoprotein receptor. CRC Crit Rev Biochem. 1984;16(3):207–233. doi: 10.3109/10409238409108716. [DOI] [PubMed] [Google Scholar]
  29. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  30. Tolleshaug H., Berg T. The effect of leupeptin on intracellular digestion of asialofetuin in rat hepatocytes. Exp Cell Res. 1981 Jul;134(1):207–217. doi: 10.1016/0014-4827(81)90478-x. [DOI] [PubMed] [Google Scholar]
  31. Vale R. D. Intracellular transport using microtubule-based motors. Annu Rev Cell Biol. 1987;3:347–378. doi: 10.1146/annurev.cb.03.110187.002023. [DOI] [PubMed] [Google Scholar]
  32. Weigel P. H., Clarke B. L., Oka J. A. The hepatic galactosyl receptor system: two different ligand dissociation pathways are mediated by distinct receptor populations. Biochem Biophys Res Commun. 1986 Oct 15;140(1):43–50. doi: 10.1016/0006-291x(86)91055-7. [DOI] [PubMed] [Google Scholar]
  33. Weigel P. H., Oka J. A. Endocytosis and degradation mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. J Biol Chem. 1982 Feb 10;257(3):1201–1207. [PubMed] [Google Scholar]
  34. Weigel P. H., Oka J. A. Recycling of the hepatic asialoglycoprotein receptor in isolated rat hepatocytes. Receptor-ligand complexes in an intracellular slowly dissociating pool return to the cell surface prior to dissociation. J Biol Chem. 1984 Jan 25;259(2):1150–1154. [PubMed] [Google Scholar]
  35. Weigel P. H., Oka J. A. The surface content of asialoglycoprotein receptors on isolated hepatocytes is reversibly modulated by changes in temperature. J Biol Chem. 1983 Apr 25;258(8):5089–5094. [PubMed] [Google Scholar]
  36. Yamashiro D. J., Maxfield F. R. Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells. J Cell Biol. 1987 Dec;105(6 Pt 1):2723–2733. doi: 10.1083/jcb.105.6.2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zeitlin P. L., Hubbard A. L. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures. J Cell Biol. 1982 Mar;92(3):634–647. doi: 10.1083/jcb.92.3.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES