Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):361–364. doi: 10.1042/bj2620361

Alkalinization stimulates the purified plasma-membrane Ca2+ pump by increasing its Ca2+ affinity.

L Missiaen 1, G Droogmans 1, H De Smedt 1, F Wuytack 1, L Raeymaekers 1, R Casteels 1
PMCID: PMC1133270  PMID: 2530979

Abstract

The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of PtdIns(4,5)P2, a stimulatory effect upon alkalinization was only observed at a PtdIns(4,5)P2 concentration of 10%. When a concentration of 20% was used, alkalinization decreased the Vmax. and no stimulatory effect on the ATPase at 0.3 microM-Ca2+ could be observed. Alkalinization not only stimulated the purified Ca2+ pump, but it also increased the activity of the enzyme in a plasma-membrane-enriched fraction from stomach smooth muscle by a factor of 2.06. The ionophore A23187-induced Ca2+ uptake in closed inside-out vesicles also increased by a factor of 2.54 if the pH was changed from 6.9 to 7.4. This finding indicates that the effect of pH is most likely to be exerted at the cytoplasmic site of the Ca2+ pump protein.

Full text

PDF
361

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk B. C., Aronow M. S., Brock T. A., Cragoe E., Jr, Gimbrone M. A., Jr, Alexander R. W. Angiotensin II-stimulated Na+/H+ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C-dependent and -independent pathways. J Biol Chem. 1987 Apr 15;262(11):5057–5064. [PubMed] [Google Scholar]
  2. Berk B. C., Brock T. A., Gimbrone M. A., Jr, Alexander R. W. Early agonist-mediated ionic events in cultured vascular smooth muscle cells. Calcium mobilization is associated with intracellular acidification. J Biol Chem. 1987 Apr 15;262(11):5065–5072. [PubMed] [Google Scholar]
  3. Bülbring E., den Hertog A. The action of isoprenaline on the smooth muscle of the guinea-pig taenia coli. J Physiol. 1980 Jul;304:277–296. doi: 10.1113/jphysiol.1980.sp013324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
  5. Hatori N., Fine B. P., Nakamura A., Cragoe E., Jr, Aviv A. Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem. 1987 Apr 15;262(11):5073–5078. [PubMed] [Google Scholar]
  6. Himpens B., Matthijs G., Somlyo A. V., Butler T. M., Somlyo A. P. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol. 1988 Dec;92(6):713–729. doi: 10.1085/jgp.92.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang C. L., Cogan M. G., Cragoe E. J., Jr, Ives H. E. Thrombin activation of the Na+/H+ exchanger in vascular smooth muscle cells. Evidence for a kinase C-independent pathway which is Ca2+-dependent and pertussis toxin-sensitive. J Biol Chem. 1987 Oct 15;262(29):14134–14140. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Nelson D. R., Hanahan D. J. Phospholipid and detergent effects on (Ca2+ + Mg2+)ATPase purified from human erythrocytes. Arch Biochem Biophys. 1985 Feb 1;236(2):720–730. doi: 10.1016/0003-9861(85)90678-2. [DOI] [PubMed] [Google Scholar]
  10. Neyses L., Reinlib L., Carafoli E. Phosphorylation of the Ca2+-pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase. J Biol Chem. 1985 Aug 25;260(18):10283–10287. [PubMed] [Google Scholar]
  11. Owen N. E. Effect of catecholamines on Na/H exchange in vascular smooth muscle cells. J Cell Biol. 1986 Nov;103(5):2053–2060. doi: 10.1083/jcb.103.5.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Raeymaekers L., Wuytack F., Casteels R. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochim Biophys Acta. 1985 May 28;815(3):441–454. doi: 10.1016/0005-2736(85)90372-4. [DOI] [PubMed] [Google Scholar]
  13. Reynolds E. E., Dubyak G. R. Agonist-induced calcium transients in cultured smooth muscle cells: measurements with fura-2 loaded monolayers. Biochem Biophys Res Commun. 1986 May 14;136(3):927–934. doi: 10.1016/0006-291x(86)90421-3. [DOI] [PubMed] [Google Scholar]
  14. Sunagane N., Ogawa T., Uruno T., Kubota K. Mechanism of relaxant action of papaverine. VI. Sodium ion dependence of its effect on 45Ca-efflux in guinea-pig taenia coli. Jpn J Pharmacol. 1985 Jun;38(2):133–139. doi: 10.1254/jjp.38.133. [DOI] [PubMed] [Google Scholar]
  15. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  16. Vigne P., Breittmayer J. P., Frelin C., Lazdunski M. Dual control of the intracellular pH in aortic smooth muscle cells by a cAMP-sensitive HCO3-/Cl- antiporter and a protein kinase C-sensitive Na+/H+ antiporter. J Biol Chem. 1988 Dec 5;263(34):18023–18029. [PubMed] [Google Scholar]
  17. Vrolix M., Raeymaekers L., Wuytack F., Hofmann F., Casteels R. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J. 1988 Nov 1;255(3):855–863. doi: 10.1042/bj2550855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wray S. Smooth muscle intracellular pH: measurement, regulation, and function. Am J Physiol. 1988 Feb;254(2 Pt 1):C213–C225. doi: 10.1152/ajpcell.1988.254.2.C213. [DOI] [PubMed] [Google Scholar]
  19. van Paridon P. A., de Kruijff B., Ouwerkerk R., Wirtz K. W. Polyphosphoinositides undergo charge neutralization in the physiological pH range: a 31P-NMR study. Biochim Biophys Acta. 1986 Jun 11;877(1):216–219. doi: 10.1016/0005-2760(86)90137-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES