Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):365–368. doi: 10.1042/bj2620365

How does displacement of albumin-bound tryptophan cause sustained increases in the free tryptophan concentration in plasma and 5-hydroxytryptamine synthesis in brain?

M Salter 1, R G Knowles 1, C I Pogson 1
PMCID: PMC1133271  PMID: 2818573

Abstract

Models of tryptophan catabolism and binding to serum albumin are presented to explain the observed effect of displacement of tryptophan from albumin on the concentrations of free and bound tryptophan and on the rate of 5-hydroxytryptamine (5-HT) synthesis from tryptophan in the brain. A rapid rate of dissociation of tryptophan from albumin (compared to the transit time of tryptophan through the liver) and a large fractional extraction of the free pool of tryptophan during passage through the liver are shown to be necessary factors in determining the effects observed. Because of the low fractional extraction of free tryptophan in the brain, the synthesis of 5-HT will be dependent only upon the free pool of tryptophan. Dissociation of tryptophan from albumin only causes a sustained increase in 5-HT synthesis in the brain because of the effect that this dissociation has on hepatic tryptophan catabolism and thereby on the free pool of tryptophan.

Full text

PDF
365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badawy A. A. Effects of pregnancy on tryptophan metabolism and disposition in the rat. Biochem J. 1988 Oct 1;255(1):369–372. [PMC free article] [PubMed] [Google Scholar]
  2. Bender D. A. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6(2):101–197. doi: 10.1016/0098-2997(83)90005-5. [DOI] [PubMed] [Google Scholar]
  3. Bender D. A., Boulton A. P., Coulson W. F. A simple method for the study of tryptophan binding to serum albumin by small-scale equilibrium dialysis: application to animal and human studies. Biochem Soc Trans. 1975;3(1):193–194. doi: 10.1042/bst0030193. [DOI] [PubMed] [Google Scholar]
  4. Carlsson A., Davis J. N., Kehr W., Lindqvist M., Atack C. V. Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(2):153–168. doi: 10.1007/BF00508904. [DOI] [PubMed] [Google Scholar]
  5. Curzon G. Availability of tryptophan to the brain and some hormonal and drug influences on it. Adv Biochem Psychopharmacol. 1974;10:263–271. [PubMed] [Google Scholar]
  6. Curzon G., Friedel J., Knott P. J. The effect of fatty acids on the binding of tryptophan to plasma protein. Nature. 1973 Mar 16;242(5394):198–200. doi: 10.1038/242198a0. [DOI] [PubMed] [Google Scholar]
  7. Curzon G., Knott P. J. Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma. Br J Pharmacol. 1974 Feb;50(2):197–204. doi: 10.1111/j.1476-5381.1974.tb08562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curzon G. Relationships between plasma, CSF and brain tryptophan. J Neural Transm Suppl. 1979;(15):81–92. doi: 10.1007/978-3-7091-2243-3_7. [DOI] [PubMed] [Google Scholar]
  9. Edelman I. S., Olney J. M., James A. H., Brooks L., Moore F. D. Body Composition: Studies in the Human Being by the Dilution Principle. Science. 1952 Apr 25;115(2991):447–454. doi: 10.1126/science.115.2991.447. [DOI] [PubMed] [Google Scholar]
  10. Etienne P., Young S. M., Sourkes T. L. Inhibition by albumin of tryptophan uptake by rat brain. Nature. 1976 Jul 8;262(5564):144–145. doi: 10.1038/262144a0. [DOI] [PubMed] [Google Scholar]
  11. Fish R. E., Lang C. H., Spitzer J. A. Regional blood flow during continuous low-dose endotoxin infusion. Circ Shock. 1986;18(4):267–275. [PubMed] [Google Scholar]
  12. Gál E. M., Sherman A. D. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980 Mar;5(3):223–239. doi: 10.1007/BF00964611. [DOI] [PubMed] [Google Scholar]
  13. Iwata H., Okamoto H., Ko S. Effects of various drugs on serum free and total tryptophan levels and brain tryptophan metabolism in rats. Jpn J Pharmacol. 1975 Jun;25(3):303–310. doi: 10.1254/jjp.25.303. [DOI] [PubMed] [Google Scholar]
  14. Long J. B., Youngblood W. W., Kizer J. S. A microassay for simultaneous measurement of in vivo rates of tryptophan hydroxylation and levels of serotonin in discrete brain nuclei. J Neurosci Methods. 1982 Jul;6(1-2):45–58. doi: 10.1016/0165-0270(82)90015-2. [DOI] [PubMed] [Google Scholar]
  15. Metzler H., Gebhardt R., Oberrauch W., Mecke D. A convenient and highly sensitive spectrophotometric assay for tryptophan 2,3-dioxygenase. Anal Biochem. 1982 Mar 15;121(1):10–16. doi: 10.1016/0003-2697(82)90550-4. [DOI] [PubMed] [Google Scholar]
  16. Rosenberg R., Young J. D., Ellory J. C. L-Tryptophan transport in human red blood cells. Biochim Biophys Acta. 1980 May 23;598(2):375–384. doi: 10.1016/0005-2736(80)90015-2. [DOI] [PubMed] [Google Scholar]
  17. Salter M., Knowles R. G., Pogson C. I. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J. 1986 Mar 15;234(3):635–647. doi: 10.1042/bj2340635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Salter M., Pogson C. I. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J. 1985 Jul 15;229(2):499–504. doi: 10.1042/bj2290499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith H. G., Lakatos C. Effects of acetylsalicylic acid on serum protein binding and metabolism of tryptophan in man. J Pharm Pharmacol. 1971 Mar;23(3):180–189. doi: 10.1111/j.2042-7158.1971.tb08639.x. [DOI] [PubMed] [Google Scholar]
  20. Smith S. A., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidatin of tryptophan by tryptophan 2,3-dioxygenase. Biochem J. 1980 Mar 15;186(3):977–986. doi: 10.1042/bj1860977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spano P. F., Szyszka K., Galli C. L., Ricci A. Effect of clofibrate on free and total tryptophan in serum and brain tryptophan metabolism. Pharmacol Res Commun. 1974 Apr;6(2):163–173. doi: 10.1016/s0031-6989(74)80024-x. [DOI] [PubMed] [Google Scholar]
  22. Tagliamonte A., Biggio G., Vargiu L., Gessa G. L. Increase of brain tryptophan and stimulation of serotonin synthesis by salicylate. J Neurochem. 1973 Mar;20(3):909–912. doi: 10.1111/j.1471-4159.1973.tb00054.x. [DOI] [PubMed] [Google Scholar]
  23. Tappaz M. L., Pujol J. F. Estimation of the rate of tryptophan hydroxylation in vivo: a sensitive microassay in discrete rat brain nuclei. J Neurochem. 1980 Apr;34(4):933–940. doi: 10.1111/j.1471-4159.1980.tb09668.x. [DOI] [PubMed] [Google Scholar]
  24. Young S. N., St-Arnaud-McKenzie D., Sourkes T. L. Importance of tryptophan pyrrolase and aromatic amino acid decarboxylase in the catabolism of tryptophan. Biochem Pharmacol. 1978 Mar 1;27(5):763–767. doi: 10.1016/0006-2952(78)90517-8. [DOI] [PubMed] [Google Scholar]
  25. Yuwiler A., Oldendorf W. H., Geller E., Braun L. Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J Neurochem. 1977 May;28(5):1015–1023. doi: 10.1111/j.1471-4159.1977.tb10664.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES