Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):377–380. doi: 10.1042/bj2620377

Evidence for the regulatory function of synaptoplasmic acetyl-CoA in acetylcholine synthesis in nerve endings.

H Bielarczyk 1, A Szutowicz 1
PMCID: PMC1133274  PMID: 2818575

Abstract

Isolated synaptosomes maintained a relatively stable level of acetyl-CoA during their incubation in the presence of 30 mM-KCl. Addition of Ca2+ resulted in inhibition of pyruvate oxidation and slight activation of acetylcholine synthesis. The cation decreased acetyl-CoA in intrasynaptosomal mitochondria, but did not alter its content in synaptoplasm. Verapamil did not affect pyruvate oxidation, but decreased acetyl-CoA in synaptoplasm and inhibited acetylcholine synthesis in synaptosomes. It indicates that Ca2+ might regulate acetylcholine synthesis through changes in the direct transfer of acetyl-CoA from mitochondria to synaptoplasm.

Full text

PDF
377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Browning E. T., Schulman M. P. (14C) acetylcholine synthesis by cortex slices of rat brain. J Neurochem. 1968 Dec;15(12):1391–1405. doi: 10.1111/j.1471-4159.1968.tb05921.x. [DOI] [PubMed] [Google Scholar]
  3. Carvalho C. A., Coutinho O. P., Carvalho A. P. Effects of Ca2+ channel blockers on Ca2+ translocation across synaptosomal membranes. J Neurochem. 1986 Dec;47(6):1774–1784. doi: 10.1111/j.1471-4159.1986.tb13088.x. [DOI] [PubMed] [Google Scholar]
  4. Dolezal V., Tucek S. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices. J Neurochem. 1981 Apr;36(4):1323–1330. doi: 10.1111/j.1471-4159.1981.tb00569.x. [DOI] [PubMed] [Google Scholar]
  5. Foldes M., Barritt G. J. Regulation by calcium ions of pyruvate carboxylation, pyruvate transport, and adenine nucleotide transport in isolated rat liver mitochondria. J Biol Chem. 1977 Aug 10;252(15):5372–5380. [PubMed] [Google Scholar]
  6. Gibson G. E., Jope R., Blass J. P. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J. 1975 Apr;148(1):17–23. doi: 10.1042/bj1480017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson G. E., Peterson C. Acetylcholine and oxidative metabolism in septum and hippocampus in vitro. J Biol Chem. 1983 Jan 25;258(2):1142–1145. [PubMed] [Google Scholar]
  8. Haga T., Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta. 1973 Jan 26;291(2):564–575. doi: 10.1016/0005-2736(73)90508-7. [DOI] [PubMed] [Google Scholar]
  9. Harvey S. A., Booth R. F., Clark J. B. The effect of [Ca2+] and [H+] on the functional recovery of rat brain synaptosomes from anoxic insult in vitro. Biochem J. 1983 May 15;212(2):289–295. doi: 10.1042/bj2120289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lai J. C., DiLorenzo J. C., Sheu K. F. Pyruvate dehydrogenase complex is inhibited in calcium-loaded cerebrocortical mitochondria. Neurochem Res. 1988 Nov;13(11):1043–1048. doi: 10.1007/BF00973148. [DOI] [PubMed] [Google Scholar]
  11. Lefresne P., Guyenet P., Glowinski J. Acetylcholine synthesis from (2- 14 C)pyruvate in rat striatal slices. J Neurochem. 1973 Apr;20(4):1083–1097. doi: 10.1111/j.1471-4159.1973.tb00079.x. [DOI] [PubMed] [Google Scholar]
  12. Mann S. P., Hebb C. Free choline in the brain of the rat. J Neurochem. 1977 Jan;28(1):241–241. doi: 10.1111/j.1471-4159.1977.tb07735.x. [DOI] [PubMed] [Google Scholar]
  13. Molenaar P. C., Nickolson V. J., Polak R. L. Preferential release of newly synthesized 3 H-acetylcholine from rat cerebral cortex slices in vitro. Br J Pharmacol. 1973 Jan;47(1):97–108. doi: 10.1111/j.1476-5381.1973.tb08162.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rícný J., Tucek S. Acetyl coenzyme A and acetylcholine in slices of rat caudate nuclei incubated in the presence of metabolic inhibitors. J Biol Chem. 1981 May 25;256(10):4919–4923. [PubMed] [Google Scholar]
  15. Szutowicz A., Bielarczyk H. Elimination of CoASH interference from acetyl-CoA cycling assay by maleic anhydride. Anal Biochem. 1987 Aug 1;164(2):292–296. doi: 10.1016/0003-2697(87)90495-7. [DOI] [PubMed] [Google Scholar]
  16. Szutowicz A., Bielarczyk H., Lysiak W. The role of citrate derived from glucose in the acetylcholine synthesis in rat brain synaptosomes. Int J Biochem. 1981;13(8):887–892. doi: 10.1016/0020-711x(81)90014-8. [DOI] [PubMed] [Google Scholar]
  17. Szutowicz A., Lysiak W., Angielski S. The effect of (-)hydroxycitrate on pyruvate metabolism in rat brain synaptosomes. J Neurochem. 1977 Aug;29(2):375–378. doi: 10.1111/j.1471-4159.1977.tb09635.x. [DOI] [PubMed] [Google Scholar]
  18. Tucek S. Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog Biophys Mol Biol. 1984;44(1):1–46. doi: 10.1016/0079-6107(84)90011-7. [DOI] [PubMed] [Google Scholar]
  19. Vághy P. L., Johnson J. D., Matlib M. A., Wang T., Schwartz A. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. J Biol Chem. 1982 Jun 10;257(11):6000–6002. [PubMed] [Google Scholar]
  20. White H. L., Wu J. C. Kinetics of choline acetyltransferases (EC 2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J Neurochem. 1973 Feb;20(2):297–307. doi: 10.1111/j.1471-4159.1973.tb12129.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES