Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Sep 1;262(2):397–402. doi: 10.1042/bj2620397

Short-term regulation of glycolysis by vasoactive intestinal peptide in epithelial cells isolated from rat small intestine.

I Rossi 1, L Monge 1, J E Feliu 1
PMCID: PMC1133281  PMID: 2552995

Abstract

In epithelial cells isolated from rat small intestine, we have studied the influence of vasoactive intestinal peptide (VIP), a neurotransmitter which markedly increases enterocyte cyclic AMP, and of two cyclic AMP analogues (8-bromo cyclic AMP and N6,2'-O-dibutyryl cyclic AMP) on the rate of glycolysis, fructose 2,6-bisphosphate concentration and 6-phosphofructo-2-kinase activity, as well as on the rate of 3-O-methyl-D-[14C]glucose uptake. Our results show that, without affecting the rate of 3-O-methyl-D-[14C]glucose accumulation, VIP and cyclic AMP analogues were able to inhibit glucose consumption and L-lactate formation by isolated rat enterocytes. These effects occurred parallel to a significant decrease in the cellular concentration of fructose 2,6-bisphosphate and to a partial inactivation of 6-phosphofructo-2-kinase. These findings support the hypothesis that VIP inhibits glycolysis in rat enterocytes through a cyclic AMP-dependent mechanism.

Full text

PDF
397

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  2. Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hue L., Sobrino F., Bosca L. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration. Biochem J. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jamal A., Kellett G. L. Regulation of mucosal phosphofructokinase in the small intestine of the streptozotocin-diabetic rat. Diabetologia. 1983 Oct;25(4):355–359. doi: 10.1007/BF00253201. [DOI] [PubMed] [Google Scholar]
  7. Jamal A., Kellett G. L., Robertson J. P. The effect of glucose on the activity of phosphofructokinase in the mucosa of rat small intestine. Biochem J. 1984 Mar 1;218(2):459–464. doi: 10.1042/bj2180459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jamal A., Kellett G. L. The effect of starvation on the control of phosphofructokinase activity in the epithelial cells of the rat small intestine. Biochem J. 1983 Jan 15;210(1):129–135. doi: 10.1042/bj2100129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Khoja S. M., Kellett G. L. Phosphofructokinase D from the epithelial cells of rat small intestine. Biochem J. 1983 Nov 1;215(2):335–341. doi: 10.1042/bj2150335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laburthe M., Prieto J. C., Amiranoff B., Dupont C., Hui Bon Hoa D., Rosselin G. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 2. Characterization and structural requirements of the stimulatory effect of vasoactive intestinal peptide on production of adenosine 3':5'-monophosphate. Eur J Biochem. 1979 May 15;96(2):239–248. doi: 10.1111/j.1432-1033.1979.tb13034.x. [DOI] [PubMed] [Google Scholar]
  11. Laburthe M., Prieto J. C., Amiranoff B., Dupont C., Hui Bon Hoa D., Rosselin G. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 2. Characterization and structural requirements of the stimulatory effect of vasoactive intestinal peptide on production of adenosine 3':5'-monophosphate. Eur J Biochem. 1979 May 15;96(2):239–248. doi: 10.1111/j.1432-1033.1979.tb13034.x. [DOI] [PubMed] [Google Scholar]
  12. Lamers J. M., Hülsmann W. C. The effects of fatty acids on oxidative decarboxylation of pyruvate in rat small intestine. Biochim Biophys Acta. 1974 Mar 20;343(1):215–225. doi: 10.1016/0304-4165(74)90254-2. [DOI] [PubMed] [Google Scholar]
  13. Louis J., Philippe B., Hue L. Fructose 2,6-bisphosphate in isolated rat enterocytes. Biochem J. 1985 Dec 1;232(2):622–623. doi: 10.1042/bj2320622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mallet R. T., Kelleher J. K., Jackson M. J. Substrate metabolism of isolated jejunal epithelium: conservation of three-carbon units. Am J Physiol. 1986 Feb;250(2 Pt 1):C191–C198. doi: 10.1152/ajpcell.1986.250.2.C191. [DOI] [PubMed] [Google Scholar]
  15. Monge L., Mojena M., Ortega J. L., Samper B., Cabello M. A., Feliu J. E. Chlorpropamide raises fructose-2,6-bisphosphate concentration and inhibits gluconeogenesis in isolated rat hepatocytes. Diabetes. 1986 Jan;35(1):89–96. doi: 10.2337/diab.35.1.89. [DOI] [PubMed] [Google Scholar]
  16. Porteous J. W. Glucose as a fuel for small intestine. Biochem Soc Trans. 1978;6(3):534–539. doi: 10.1042/bst0060534. [DOI] [PubMed] [Google Scholar]
  17. Porteous J. W. Glutamate, glutamine, aspartate, asparagine, glucose and ketone-body metabolism in chick intestinal brush-border cells. Biochem J. 1980 Jun 15;188(3):619–632. doi: 10.1042/bj1880619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Towler C. M., Pugh-Humphreys G. P., Porteous J. W. Characterization of columnar absorptive epithelial cells isolated from rat jejunum. J Cell Sci. 1978 Feb;29:53–75. doi: 10.1242/jcs.29.1.53. [DOI] [PubMed] [Google Scholar]
  19. Van Schaftingen E. Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol. 1987;59:315–395. doi: 10.1002/9780470123058.ch7. [DOI] [PubMed] [Google Scholar]
  20. Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]
  21. Vidal H., Comte B., Beylot M., Riou J. P. Inhibition of glucose oxidation by vasoactive intestinal peptide in isolated rat enterocytes. J Biol Chem. 1988 Jul 5;263(19):9206–9211. [PubMed] [Google Scholar]
  22. Watford M., Lund P., Krebs H. A. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem J. 1979 Mar 15;178(3):589–596. doi: 10.1042/bj1780589. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES