Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Sep 15;262(3):887–895. doi: 10.1042/bj2620887

Lipid metabolism during the initiation of lactation in the rat. The effects of starvation and tumour growth.

R D Evans 1, D H Williamson 1
PMCID: PMC1133357  PMID: 2590173

Abstract

1. The effects of starvation post partum (24 h) and tumour growth pre partum on the initiation of lactation in the rat were studied. 2. Tumour growth decreased food intake at 24 h, but not at 2 days post partum. 3. Pup growth rate increased with hyperphagia; starvation and tumour burden decreased pup growth, and starvation decreased maternal body weight. 4. Starvation decreased gastrointestinal-tract mass; tumour growth decreased gastrointestinal-tract and mammary-gland mass. 5. Mammary-gland DNA-synthesis rate was high immediately post partum, but decreased by day 3 of lactation; starvation and tumour burden decreased this rate, and also decreased gastrointestinal-tract DNA-synthesis rate. 6. Arteriovenous differences for glucose and lactate across the mammary gland did not change with time, nor were they affected by the tumour. Starvation decreased arterial glucose and lactate, and the gland extracted less glucose but produced lactate. 7. Mammary-gland lipogenesis was sensitive to starvation and to tumour growth. 8. In contrast with the gradual development of mammary-gland lipogenic enzyme activities, lipoprotein lipase activity was high in the gland by 2 days post partum; starvation or tumour burden decreased the activity. 9. The mammary gland is sensitive post partum to decreased food intake, and to tumour presence. The effects of the latter are apparently independent of hypophagia.

Full text

PDF
887

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano J. D., Ekins R. P., Maritz G., Turner R. C. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol (Copenh) 1972 Jul;70(3):487–509. doi: 10.1530/acta.0.0700487. [DOI] [PubMed] [Google Scholar]
  2. Argilés J. M., Lopez-Soriano F. J., Evans R. D., Williamson D. H. Interleukin-1 and lipid metabolism in the rat. Biochem J. 1989 May 1;259(3):673–678. doi: 10.1042/bj2590673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartholomeusz R. K., Bruce N. W., Martin C. E., Hartmann P. E. Serial measurement of arterial plasma progesterone levels throughout gestation and parturition in individual rats. Acta Endocrinol (Copenh) 1976 Jun;82(2):436–443. doi: 10.1530/acta.0.0820436. [DOI] [PubMed] [Google Scholar]
  4. Bussmann L. E., Ward S., Kuhn N. J. Lactose and fatty acid synthesis in lactating-rat mammary gland. Effects of starvation, re-feeding, and administration of insulin, adrenaline, streptozotocin and 2-bromo-alpha-ergocryptine. Biochem J. 1984 Apr 1;219(1):173–180. doi: 10.1042/bj2190173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung L. W., Coffey D. S. Biochemical characterization of prostatic nuclei. II. Relationship between DNA synthesis and protein synthesis. Biochim Biophys Acta. 1971 Nov 19;247(4):584–596. [PubMed] [Google Scholar]
  6. Clegg R. A. Regulation of fatty acid uptake and synthesis in mammary and adipose tissues: contrasting roles for cyclic AMP. Curr Top Cell Regul. 1988;29:77–128. doi: 10.1016/b978-0-12-152829-4.50005-7. [DOI] [PubMed] [Google Scholar]
  7. Cripps A. W., Williams V. J. The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr. 1975 Jan;33(1):17–32. doi: 10.1079/bjn19750005. [DOI] [PubMed] [Google Scholar]
  8. Elias E., Dowling R. H. The mechanism for small-bowel adaptation in lactating rats. Clin Sci Mol Med. 1976 Nov;51(5):427–433. doi: 10.1042/cs0510427. [DOI] [PubMed] [Google Scholar]
  9. Evans R. D., Williamson D. H. Tissue-specific effects of rapid tumour growth on lipid metabolism in the rat during lactation and on litter removal. Biochem J. 1988 May 15;252(1):65–72. doi: 10.1042/bj2520065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans R. D., Williamson D. H. Tumour necrosis factor alpha (cachectin) mimics some of the effects of tumour growth on the disposal of a [14C]lipid load in virgin, lactating and litter-removed rats. Biochem J. 1988 Dec 15;256(3):1055–1058. doi: 10.1042/bj2561055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flint D. J., Clegg R. A., Vernon R. G. Prolactin and the regulation of adipose-tissue metabolism during lactation in rats. Mol Cell Endocrinol. 1981 May;22(2):265–275. doi: 10.1016/0303-7207(81)90096-4. [DOI] [PubMed] [Google Scholar]
  12. Grigor M. R., Geursen A., Sneyd M. J., Warren S. M. Regulation of lipogenic capacity in lactating rats. Biochem J. 1982 Dec 15;208(3):611–618. doi: 10.1042/bj2080611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamosh M., Clary T. R., Chernick S. S., Scow R. O. Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta. 1970 Sep 8;210(3):473–482. doi: 10.1016/0005-2760(70)90044-5. [DOI] [PubMed] [Google Scholar]
  14. Herzfeld A., Greengard O. The dedifferentiated pattern of enzymes in livers of tumor-bearing rats. Cancer Res. 1972 Sep;32(9):1826–1832. doi: 10.2172/4649739. [DOI] [PubMed] [Google Scholar]
  15. Katz J., Wals P. A. Pentose cycle and reducing equivalents in rat mammary-gland slices. Biochem J. 1972 Jul;128(4):879–899. doi: 10.1042/bj1280879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kliewer R. L., Rasmussen K. M. Malnutrition during the reproductive cycle: effects on galactopoietic hormones and lactational performance in the rat. Am J Clin Nutr. 1987 Dec;46(6):926–935. doi: 10.1093/ajcn/46.6.926. [DOI] [PubMed] [Google Scholar]
  17. Knight C. H., Peaker M. Mammary cell proliferation in mice during pregnancy and lactation in relation to milk yield. Q J Exp Physiol. 1982 Jan;67(1):165–177. doi: 10.1113/expphysiol.1982.sp002610. [DOI] [PubMed] [Google Scholar]
  18. Kuhn N. J. Progesterone withdrawal as the lactogenic trigger in the rat. J Endocrinol. 1969 May;44(1):39–54. doi: 10.1677/joe.0.0440039. [DOI] [PubMed] [Google Scholar]
  19. Mackall J. C., Lane M. D. Changes in mammary-gland acetyl-coenzyme A carboxylase associated with lactogenic differentiation. Biochem J. 1977 Mar 15;162(3):635–642. doi: 10.1042/bj1620635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martyn P., Hansen I. A. Initiation of fatty acid synthesis in rat mammary glands. Biochem J. 1980 Jul 15;190(1):171–175. doi: 10.1042/bj1900171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore B. J., Brasel J. A. One cycle of reproduction consisting of pregnancy, lactation or no lactation, and recovery: effects on carcass composition in ad libitum-fed and food-restricted rats. J Nutr. 1984 Sep;114(9):1548–1559. doi: 10.1093/jn/114.9.1548. [DOI] [PubMed] [Google Scholar]
  22. Morgan B., Winick M. A possible control of food intake during pregnancy in the rat. Br J Nutr. 1981 Jul;46(1):29–37. doi: 10.1079/bjn19810006. [DOI] [PubMed] [Google Scholar]
  23. Munday M. R., Williamson D. H. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J. 1983 Jul 15;214(1):183–187. doi: 10.1042/bj2140183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Munday M. R., Williamson D. H. Effects of starvation, insulin or prolactin deficiency on the activity of acetyl-CoA carboxylase in mammary gland and liver of lactating rats. FEBS Lett. 1982 Feb 22;138(2):285–288. doi: 10.1016/0014-5793(82)80462-6. [DOI] [PubMed] [Google Scholar]
  25. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  26. Oller do Nascimento C. M., Williamson D. H. Tissue-specific effects of starvation and refeeding on the disposal of oral [1-14C]triolein in the rat during lactation and on removal of litter. Biochem J. 1988 Sep 1;254(2):539–546. doi: 10.1042/bj2540539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Page T. Evidence for the involvement of a gastrointestinal peptide in the regulation of glucose uptake in the mammary gland of the lactating rat. Biochem J. 1989 Mar 15;258(3):639–643. doi: 10.1042/bj2580639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Patton J. S., Peters P. M., McCabe J., Crase D., Hansen S., Chen A. B., Liggitt D. Development of partial tolerance to the gastrointestinal effects of high doses of recombinant tumor necrosis factor-alpha in rodents. J Clin Invest. 1987 Dec;80(6):1587–1596. doi: 10.1172/JCI113245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Remesar X., Arola L., Palou A., Alemany M. Body and organ size and composition during the breeding cycle of rats (Rattus norvegicus). Lab Anim Sci. 1981 Feb;31(1):67–70. [PubMed] [Google Scholar]
  30. Robinson A. M., Girard J. R., Williamson D. H. Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Measurements of lipogenesis in vivo and plasma hormone concentrations in response to starvation and refeeding. Biochem J. 1978 Oct 15;176(1):343–346. doi: 10.1042/bj1760343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robinson A. M., Williamson D. H. Comparison of glucose metabolism in the lactating mammary gland of the rat in vivo and in vitro. Effects of starvation, prolactin or insulin deficiency. Biochem J. 1977 Apr 15;164(1):153–159. doi: 10.1042/bj1640153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SRERE P. A. The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem. 1959 Oct;234:2544–2547. [PubMed] [Google Scholar]
  33. Sakanashi T. M., Brigham H. E., Rasmussen K. M. Effect of dietary restriction during lactation on cardiac output, organ blood flow and organ weights of rats. J Nutr. 1987 Aug;117(8):1469–1474. doi: 10.1093/jn/117.8.1469. [DOI] [PubMed] [Google Scholar]
  34. Semb H., Peterson J., Tavernier J., Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem. 1987 Jun 15;262(17):8390–8394. [PubMed] [Google Scholar]
  35. Spencer A. F., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Citrate cleavage in obesity and lactation. Biochem J. 1966 Jun;99(3):760–765. doi: 10.1042/bj0990760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  38. Wilde C. J., Kuhn N. J. Lactose synthesis in the rat, and the effects of litter size and malnutrition. Biochem J. 1979 Aug 15;182(2):287–294. doi: 10.1042/bj1820287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Williamson D. H., Evans R. D., Wood S. C. Tumor growth and lipid metabolism during lactation in the rat. Adv Enzyme Regul. 1988;27:93–104. doi: 10.1016/0065-2571(88)90011-8. [DOI] [PubMed] [Google Scholar]
  40. Zinder O., Hamosh M., Fleck T. R., Scow R. O. Effect of prolactin on lipoprotein lipase in mammary glands and adipose tissue of rats. Am J Physiol. 1974 Mar;226(3):742–748. doi: 10.1152/ajplegacy.1974.226.3.744. [DOI] [PubMed] [Google Scholar]
  41. Zwierzchowski L., Kleczkowska D., Niedbalski W., Grochowska I. Variation of DNA polymerase activities and DNA synthesis in mouse mammary gland during pregnancy and early lactation. Differentiation. 1984;28(2):179–185. doi: 10.1111/j.1432-0436.1984.tb00281.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES