Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Sep 15;262(3):965–970. doi: 10.1042/bj2620965

Ca2+-induced accumulation of pyrophosphate in mitochondria during acetate metabolism.

T Inoue 1, T Yamada 1, E Furuya 1, K Tagawa 1
PMCID: PMC1133367  PMID: 2556115

Abstract

The mechanism of pyrophosphate (PPi) accumulation in rat liver during acetate metabolism was investigated. Perfusion of the liver with acetate in the presence of noradrenaline and glucagon induced marked accumulation of PPi (2 mumol/g of liver, 200 times that of control). In contrast, perfusion with glutamine, which generates PPi only in the cytosol, caused little accumulation of PPi, even in the presence of the two hormones. The site of PPi accumulation was shown to be the mitochondria by the finding that isolated mitochondria from the liver perfused with acetate and the hormones contained 50 nmol of PPi/mg of protein. The addition of an uncoupler to mitochondria with accumulated PPi caused gradual decrease in their PPi content, with concomitant release of a stoichiometric amount of Ca2+. Similar accumulation of PPi was observed when isolated mitochondria were incubated with acetate and Ca2+. These results show that an increase in cytosolic Ca2+ caused by the co-administration of the two hormones induced uptake of the ion into mitochondria, and that PPi accumulated in mitochondria only when it was generated in the organelles with an elevated concentration of Ca2+. High mitochondrial concentrations of Ca2+ are considered to inhibit inorganic pyrophosphatase through the formation of a stable complex, CaPPi-. Mitochondria with accumulated PPi had normal respiratory activities, and their adenine nucleotide concentrations were increased 2-fold rather than being decreased, the increases also being considered to be caused by their high concentration of Ca2+.

Full text

PDF
965

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aas M., Bremer J. Short-chain fatty acid activation in rat liver. A new assay procedure for the enzymes and studies on their intracellular localization. Biochim Biophys Acta. 1968 Oct 22;164(2):157–166. doi: 10.1016/0005-2760(68)90142-2. [DOI] [PubMed] [Google Scholar]
  2. Altin J. G., Bygrave F. L. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. Biochem J. 1986 Sep 15;238(3):653–661. doi: 10.1042/bj2380653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aprille J. R., Nosek M. T., Brennan W. A., Jr Adenine nucleotide content of liver mitochondria increases after glucagon treatment of rats or isolated hepatocytes. Biochem Biophys Res Commun. 1982 Sep 30;108(2):834–839. doi: 10.1016/0006-291x(82)90905-6. [DOI] [PubMed] [Google Scholar]
  4. Barth C., Sladek M., Decker K. The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim Biophys Acta. 1971 Oct 5;248(1):24–33. doi: 10.1016/0005-2760(71)90071-3. [DOI] [PubMed] [Google Scholar]
  5. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  7. Cook G. A., O'Brien W. E., Wood H. G., King M. T., Veech R. L. A rapid, enzymatic assay for the measurement of inorganic pyrophosphate in animal tissues. Anal Biochem. 1978 Dec;91(2):557–565. doi: 10.1016/0003-2697(78)90543-2. [DOI] [PubMed] [Google Scholar]
  8. Davidson A. M., Halestrap A. P. Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187. Biochem J. 1988 Sep 1;254(2):379–384. doi: 10.1042/bj2540379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davidson A. M., Halestrap A. P. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. Biochem J. 1987 Sep 15;246(3):715–723. doi: 10.1042/bj2460715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Desch G., Oules R., Mion C., Descomps B., De Paulet A. C. Plasma acetate levels during hemodialysis. Clin Chim Acta. 1978 May 2;85(3):231–241. doi: 10.1016/0009-8981(78)90300-5. [DOI] [PubMed] [Google Scholar]
  11. Gitomer W. L., Veech R. L. The accumulation of pyrophosphate by rat hepatocytes. Toxicol Ind Health. 1986 Sep;2(3):299–307. doi: 10.1177/074823378600200308. [DOI] [PubMed] [Google Scholar]
  12. Haynes R. C., Jr, Picking R. A., Zaks W. J. Control of mitochondrial content of adenine nucleotides by submicromolar calcium concentrations and its relationship to hormonal effects. J Biol Chem. 1986 Dec 5;261(34):16121–16125. [PubMed] [Google Scholar]
  13. Irie M., Yabuta A., Kimura K., Shindo Y., Tomita K. Distribution and properties of alkaline pyrophosphatases of rat liver. J Biochem. 1970 Jan;67(1):47–58. doi: 10.1093/oxfordjournals.jbchem.a129233. [DOI] [PubMed] [Google Scholar]
  14. Kamiike W., Nakahara M., Nakao K., Koseki M., Nishida T., Kawashima Y., Watanabe F., Tagawa K. Correlation between cellular ATP level and bile excretion in the rat liver. Transplantation. 1985 Jan;39(1):50–55. doi: 10.1097/00007890-198501000-00005. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. LUNDQUIST F., TYGSTRUP N., WINKLER K., MELLEMGAARD K., MUNCK-PETERSEN S. Ethanol metabolism and production of free acetate in the human liver. J Clin Invest. 1962 May;41:955–961. doi: 10.1172/JCI104574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lieber C. S. Alcohol and the liver: 1984 update. Hepatology. 1984 Nov-Dec;4(6):1243–1260. doi: 10.1002/hep.1840040625. [DOI] [PubMed] [Google Scholar]
  18. Mauger J. P., Poggioli J., Claret M. Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II. J Biol Chem. 1985 Sep 25;260(21):11635–11642. [PubMed] [Google Scholar]
  19. Mitchell M. C., Herlong H. F. Alcohol and nutrition: caloric value, bioenergetics, and relationship to liver damage. Annu Rev Nutr. 1986;6:457–474. doi: 10.1146/annurev.nu.06.070186.002325. [DOI] [PubMed] [Google Scholar]
  20. Morgan N. G., Blackmore P. F., Exton J. H. Modulation of the alpha 1-adrenergic control of hepatocyte calcium redistribution by increases in cyclic AMP. J Biol Chem. 1983 Apr 25;258(8):5110–5116. [PubMed] [Google Scholar]
  21. Nishida T., Koseki M., Kamiike W., Nakahara M., Nakao K., Kawashima Y., Hashimoto T., Tagawa K. Levels of purine compounds in a perfusate as a biochemical marker of ischemic injury of cold-preserved liver. Transplantation. 1987 Jul;44(1):16–21. doi: 10.1097/00007890-198707000-00005. [DOI] [PubMed] [Google Scholar]
  22. Otto D. A., Cook G. A. Role of Ca2+ in regulating the level of mitochondrial pyrophosphate. Effect on butyrate oxidation. FEBS Lett. 1982 Dec 13;150(1):172–176. doi: 10.1016/0014-5793(82)81328-8. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  24. Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soboll S., Scholz R. Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Lett. 1986 Sep 1;205(1):109–112. doi: 10.1016/0014-5793(86)80875-4. [DOI] [PubMed] [Google Scholar]
  26. Somlyo A. P., Bond M., Somlyo A. V. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature. 1985 Apr 18;314(6012):622–625. doi: 10.1038/314622a0. [DOI] [PubMed] [Google Scholar]
  27. Sugano T., Suda K., Shimada M., Oshino N. Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a hemoglobin-free medium. J Biochem. 1978 Apr;83(4):995–1007. doi: 10.1093/oxfordjournals.jbchem.a132028. [DOI] [PubMed] [Google Scholar]
  28. Titheradge M. A., Haynes R. C., Jr The control of uncoupler-activated ATPase activity in rat liver mitochondria by adenine nucleotide transport. The effect of glucagon treatment. J Biol Chem. 1980 Feb 25;255(4):1471–1477. [PubMed] [Google Scholar]
  29. Veech R. L., Cook G. A., King M. T. Relationship of free cytoplasmic pyrophosphate to liver glucose content and total pyrophosphate to cytoplasmic phosphorylation potential. FEBS Lett. 1980 Aug 25;117 (Suppl):K65–K72. doi: 10.1016/0014-5793(80)80571-0. [DOI] [PubMed] [Google Scholar]
  30. Veech R. L., Gitomer W. L., King M. T., Balaban R. S., Costa J. L., Eanes E. D. The effect of short chain fatty acid administration on hepatic glucose, phosphate, magnesium and calcium metabolism. Adv Exp Med Biol. 1986;194:617–646. doi: 10.1007/978-1-4684-5107-8_48. [DOI] [PubMed] [Google Scholar]
  31. Veech R. L., Gitomer W. L. The medical and metabolic consequences of administration of sodium acetate. Adv Enzyme Regul. 1988;27:313–343. doi: 10.1016/0065-2571(88)90024-6. [DOI] [PubMed] [Google Scholar]
  32. Watanabe F., Hashimoto T., Tagawa K. Energy-independent protection of the oxidative phosphorylation capacity of mitochondria against anoxic damage by ATP and its non-metabolizable analogs. J Biochem. 1985 Apr;97(4):1229–1234. doi: 10.1093/oxfordjournals.jbchem.a135168. [DOI] [PubMed] [Google Scholar]
  33. Watanabe F., Kamiike W., Nishimura T., Hashimoto T., Tagawa K. Decrease in mitochondrial levels of adenine nucleotides and concomitant mitochondrial dysfunction in ischemic rat liver. J Biochem. 1983 Aug;94(2):493–499. doi: 10.1093/oxfordjournals.jbchem.a134380. [DOI] [PubMed] [Google Scholar]
  34. Yamada T., Inoue T., Nishida T., Furuya E., Tagawa K. Hepatic accumulation of pyrophosphate during acetate metabolism. J Biochem. 1988 Nov;104(5):847–850. doi: 10.1093/oxfordjournals.jbchem.a122561. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES