Abstract
1. Using a human hepatoma (Hep G2) cell line that continually synthesizes 3 beta-hydroxy-5-cholenoic acid, lithocholic acid, chenodeoxycholic acid and cholic acid we have determined the metabolism and biological effects of 26-hydroxycholesterol and 7 alpha-hydroxycholesterol. 2. Addition of 26-hydroxycholesterol to the medium (6 microM) downregulated cholesterol and chenodeoxycholic acid synthesis. 3. The predominant metabolite of 26-hydroxycholesterol was 3 beta-hydroxy-5-cholenoic acid. 4. Cholesterol synthesis was not affected by the addition of 7 alpha-hydroxycholesterol (6 and 12 microM). The predominant metabolite of 7 alpha-hydroxycholesterol was chenodeoxycholic acid. 5. In Hep G2 cells 7 alpha-hydroxylation of 26-hydroxycholesterol is not well expressed.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
- Ali S. S., Javitt N. B. Quantitative estimation os bile salts in serum. Can J Biochem. 1970 Sep;48(9):1054–1057. doi: 10.1139/o70-166. [DOI] [PubMed] [Google Scholar]
- Anderson K. E., Kok E., Javitt N. B. Bile acid synthesis in man: metabolism of 7 -hydroxycholesterol- 14 C and 26-hydroxycholesterol- 3 H. J Clin Invest. 1972 Jan;51(1):112–117. doi: 10.1172/JCI106780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelson M., Mörk B., Sjövall J. Occurrence of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid, and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid as normal constituents in human blood. J Lipid Res. 1988 May;29(5):629–641. [PubMed] [Google Scholar]
- Ayaki Y., Kok E., Javitt N. B. Cholic acid synthesis from 26-hydroxycholesterol and 3-hydroxy-5-cholestenoic acid in the rabbit. J Biol Chem. 1989 Mar 5;264(7):3818–3821. [PubMed] [Google Scholar]
- Cighetti G., Bosisio E., Galli G., Galli Kienle M. The effect of cholestyramine on liver HMG-CoA reductase and cholesterol 7 alpha-hydroxylase in various laboratory animals. Life Sci. 1983 Dec 19;33(25):2483–2488. doi: 10.1016/0024-3205(83)90156-x. [DOI] [PubMed] [Google Scholar]
- Esterman A. L., Cohen B. I., Javitt N. B. Cholesterol metabolism: use of D2O for determination of synthesis rate in cell culture. J Lipid Res. 1985 Aug;26(8):950–954. [PubMed] [Google Scholar]
- Everson G. T., Polokoff M. A. HepG2. A human hepatoblastoma cell line exhibiting defects in bile acid synthesis and conjugation. J Biol Chem. 1986 Feb 15;261(5):2197–2201. [PubMed] [Google Scholar]
- Javitt N. B., Emerman S. Metabolic pathways of bile acid formation in the rat. Mt Sinai J Med. 1970 Jul-Aug;37(4):477–481. [PubMed] [Google Scholar]
- Javitt N. B., Kok E., Burstein S., Cohen B., Kutscher J. 26-Hydroxycholesterol. Identification and quantitation in human serum. J Biol Chem. 1981 Dec 25;256(24):12644–12646. [PubMed] [Google Scholar]
- Javitt N. B., Kok E., Cohen B., Burstein S. Cerebrotendinous xanthomatosis: reduced serum 26-hydroxycholesterol. J Lipid Res. 1982 May;23(4):627–630. [PubMed] [Google Scholar]
- Javitt N. B., Pfeffer R., Kok E., Burstein S., Cohen B. I., Budai K. Bile acid synthesis in cell culture. J Biol Chem. 1989 Jun 25;264(18):10384–10387. [PubMed] [Google Scholar]
- Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
- Koopman B. J., van der Molen J. C., Wolthers B. G., Vanderpas J. B. Determination of some hydroxycholesterols in human serum samples. J Chromatogr. 1987 Apr 24;416(1):1–13. doi: 10.1016/0378-4347(87)80479-6. [DOI] [PubMed] [Google Scholar]
- Miao E., Wilson S. R., Javitt N. B. Cholesterol metabolism. Effect of 26-thiacholesterol and 26-aminocholesterol, analogues of 26-hydroxycholesterol, on cholesterol synthesis and low-density-lipoprotein-receptor binding. Biochem J. 1988 Nov 1;255(3):1049–1052. doi: 10.1042/bj2551049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitropoulos K. A., Myant N. B., Gompertz D. The formation of propionate from the side-chain of cholesterol in an infant with an inborn error in the metabolism of propionate. Biochem J. 1970 Jul;118(3):551–552. doi: 10.1042/bj1180551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salen G., Grundy S. M. The metabolism of cholestanol, cholesterol, and bile acids in cerebrotendinous xanthomatosis. J Clin Invest. 1973 Nov;52(11):2822–2835. doi: 10.1172/JCI107478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setchell K. D., Worthington J. A rapid method for the quantitative extraction of bile acids and their conjugates from serum using commercially available reverse-phase octadecylsilane bonded silica cartridges. Clin Chim Acta. 1982 Oct 27;125(2):135–144. doi: 10.1016/0009-8981(82)90190-5. [DOI] [PubMed] [Google Scholar]
- Sugiyama K., Okuyama S., Imoto M., Okumura K., Takagi K., Satake T. Clinical evaluation of serum 3 beta-hydroxy-5-cholenoic acid in hepatobiliary diseases. Gastroenterol Jpn. 1986 Dec;21(6):608–616. doi: 10.1007/BF02774489. [DOI] [PubMed] [Google Scholar]
- Wachtel N., Emerman S., Javitt N. B. Metabolism of cholest-5-ene-3 beta, 26-diol in the rat and hamster. J Biol Chem. 1968 Oct 10;243(19):5207–5212. [PubMed] [Google Scholar]
