Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Oct 1;263(1):89–95. doi: 10.1042/bj2630089

Target size analysis by radiation inactivation of carnitine palmitoyltransferase activity and malonyl-CoA binding in outer membranes from rat liver mitochondria.

V A Zammit 1, C G Corstorphine 1, M P Kolodziej 1
PMCID: PMC1133394  PMID: 2604707

Abstract

The functional molecular sizes of the protein(s) mediating the carnitine palmitoyltransferase I (CPT I) activity and the [14C]malonyl-CoA binding in purified outer-membrane preparations from rat liver mitochondria were determined by radiation-inactivation analysis. In all preparations tested the dose-dependent decay in [14C]malonyl-CoA binding was less steep than that for CPT I activity, suggesting that the protein involved in malonyl-CoA binding may be smaller than that catalysing the CPT I activity. The respective sizes computed from simultaneous analysis for molecular-size standards exposed under identical conditions were 60,000 and 83,000 DA for malonyl-CoA binding and CPT I activity respectively. In irradiated membranes the sensitivity of CPT activity to malonyl-CoA inhibition was increased, as judged by malonyl-CoA inhibition curves for the activity in control and in irradiated membranes that had received 20 Mrad radiation and in which CPT activity had decayed by 60%. Possible correlations between these data and other recent observations on the CPT system are discussed.

Full text

PDF
89

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  2. Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brady P. S., Brady L. J. Hepatic carnitine palmitoyltransferase turnover and translation rates in fed, starved, streptozotocin-diabetic and diethylhexyl phthalate-treated rats. Biochem J. 1987 Sep 15;246(3):641–649. doi: 10.1042/bj2460641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown A. E., Lok M. P., Elovson J. Improved method for the isolation of rat liver plasma membrane. Biochim Biophys Acta. 1976 Mar 19;426(3):418–432. doi: 10.1016/0005-2736(76)90387-4. [DOI] [PubMed] [Google Scholar]
  5. Carroscosa J. M., Schleicher E., Maier R., Hackenberg C., Wieland O. H. Separation of the protein-tyrosine kinase and phosphatidylinositol kinase activities of the human placental insulin receptor. Biochim Biophys Acta. 1988 Sep 16;971(2):170–178. doi: 10.1016/0167-4889(88)90189-9. [DOI] [PubMed] [Google Scholar]
  6. Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
  7. Edwards P. A., Kempner E. S., Lan S. F., Erickson S. K. Functional size of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by radiation inactivation. J Biol Chem. 1985 Aug 25;260(18):10278–10282. [PubMed] [Google Scholar]
  8. Godinot C., Gautheron D. C. Separation of right-side-out and inside-out submitochondrial particles by affinity chromatography on Sepharose-cytochrome c. Methods Enzymol. 1979;55:112–114. doi: 10.1016/0076-6879(79)55015-0. [DOI] [PubMed] [Google Scholar]
  9. Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harano Y., Kashiwagi A., Kojima H., Suzuki M., Hashimoto T., Shigeta Y. Phosphorylation of carnitine palmitoyltransferase and activation by glucagon in isolated rat hepatocytes. FEBS Lett. 1985 Sep 2;188(2):267–272. doi: 10.1016/0014-5793(85)80385-9. [DOI] [PubMed] [Google Scholar]
  11. Harmon J. T., Nielsen T. B., Kempner E. S. Molecular weight determinations from radiation inactivation. Methods Enzymol. 1985;117:65–94. doi: 10.1016/s0076-6879(85)17008-4. [DOI] [PubMed] [Google Scholar]
  12. Kiorpes T. C., Hoerr D., Ho W., Weaner L. E., Inman M. G., Tutwiler G. F. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem. 1984 Aug 10;259(15):9750–9755. [PubMed] [Google Scholar]
  13. Knoll G., Brdiczka D. Changes in freeze-fractured mitochondrial membranes correlated to their energetic state. Dynamic interactions of the boundary membranes. Biochim Biophys Acta. 1983 Aug 24;733(1):102–110. doi: 10.1016/0005-2736(83)90095-0. [DOI] [PubMed] [Google Scholar]
  14. Lo M. M., Barnard E. A., Dolly J. O. Size of acetylcholine receptors in the membrane. An improved version of the radiation inactivation method. Biochemistry. 1982 Apr 27;21(9):2210–2217. doi: 10.1021/bi00538a033. [DOI] [PubMed] [Google Scholar]
  15. Lund H. Carnitine palmitoyltransferase: characterization of a labile detergent-extracted malonyl-CoA-sensitive enzyme from rat liver mitochondria. Biochim Biophys Acta. 1987 Mar 13;918(1):67–75. doi: 10.1016/0005-2760(87)90010-5. [DOI] [PubMed] [Google Scholar]
  16. McAda P. C., Douglas M. G. A neutral metallo endoprotease involved in the processing of an F1-ATPase subunit precursor in mitochondria. J Biol Chem. 1982 Mar 25;257(6):3177–3182. [PubMed] [Google Scholar]
  17. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ness G. C., McCreery M. J., Sample C. E., Smith M., Pendleton L. C. Sulfhydryl/disulfide forms of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem. 1985 Dec 25;260(30):16395–16399. [PubMed] [Google Scholar]
  20. Nielsen M., Braestrup C. The apparent target size of rat brain benzodiazepine receptor, acetylcholinesterase, and pyruvate kinase is highly influenced by experimental conditions. J Biol Chem. 1988 Aug 25;263(24):11900–11906. [PubMed] [Google Scholar]
  21. Nugent J. H. Molecular-size standards for use in radiation-inactivation studies on proteins. Biochem J. 1986 Oct 15;239(2):459–462. doi: 10.1042/bj2390459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohlendieck K., Riesinger I., Adams V., Krause J., Brdiczka D. Enrichment and biochemical characterization of boundary membrane contact sites from rat-liver mitochondria. Biochim Biophys Acta. 1986 Sep 11;860(3):672–689. doi: 10.1016/0005-2736(86)90567-5. [DOI] [PubMed] [Google Scholar]
  23. Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
  24. Rabon E. C., Gunther R. D., Bassilian S., Kempner E. S. Radiation inactivation analysis of oligomeric structure of the H,K-ATPase. J Biol Chem. 1988 Nov 5;263(31):16189–16194. [PubMed] [Google Scholar]
  25. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SMITH L. Spectrophotometric assay of cytochrome c oxidase. Methods Biochem Anal. 1955;2:427–434. doi: 10.1002/9780470110188.ch13. [DOI] [PubMed] [Google Scholar]
  27. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
  28. Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singh H., Derwas N., Poulos A. Very long chain fatty acid beta-oxidation by rat liver mitochondria and peroxisomes. Arch Biochem Biophys. 1987 Dec;259(2):382–390. doi: 10.1016/0003-9861(87)90504-2. [DOI] [PubMed] [Google Scholar]
  30. Woeltje K. F., Kuwajima M., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. II. Use of detergents and antibodies. J Biol Chem. 1987 Jul 15;262(20):9822–9827. [PubMed] [Google Scholar]
  31. Zammit V. A., Corstorphine C. G. Altered release of carnitine palmitoyltransferase activity by digitonin from liver mitochondria of rats in different physiological states. Biochem J. 1985 Sep 1;230(2):389–394. doi: 10.1042/bj2300389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zammit V. A., Corstorphine C. G., Gray S. R. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA. Biochem J. 1984 Sep 1;222(2):335–342. doi: 10.1042/bj2220335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zammit V. A., Corstorphine C. G., Kelliher M. G. Evidence for distinct functional molecular sizes of carnitine palmitoyltransferases I and II in rat liver mitochondria. Biochem J. 1988 Mar 1;250(2):415–420. doi: 10.1042/bj2500415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES