Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Oct 1;263(1):289–292. doi: 10.1042/bj2630289

A simplified method for calculating complex metabolic sensitivities by using matrix partitioning.

B Crabtree 1, G Collins 1, M I Franklin 1
PMCID: PMC1133422  PMID: 2604700

Abstract

The matrix method for calculating the overall sensitivities (including control coefficients) of a metabolic system, described by Crabtree & Newsholme [Biochem. J. 247, 113-129 (1987)], is simplified by a preliminary partitioning of the initial matrix equation. This reduces the size of the matrix to be inverted and thereby removes a major drawback with the original method. The resulting procedure is simpler and more systematic than the alternative methods currently available, especially when the system is extensively branched.

Full text

PDF
289

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crabtree B., Newsholme E. A. A quantitative approach to metabolic control. Curr Top Cell Regul. 1985;25:21–76. doi: 10.1016/b978-0-12-152825-6.50006-0. [DOI] [PubMed] [Google Scholar]
  2. Crabtree B., Newsholme E. A. The derivation and interpretation of control coefficients. Biochem J. 1987 Oct 1;247(1):113–120. doi: 10.1042/bj2470113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  4. Giersch C. Control analysis of biochemical pathways: a novel procedure for calculating control coefficients, and an additional theorem for branched pathways. J Theor Biol. 1988 Oct 21;134(4):451–462. doi: 10.1016/s0022-5193(88)80051-1. [DOI] [PubMed] [Google Scholar]
  5. Giersch C. Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur J Biochem. 1988 Jun 15;174(3):515–519. doi: 10.1111/j.1432-1033.1988.tb14129.x. [DOI] [PubMed] [Google Scholar]
  6. Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
  7. Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
  8. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  9. Sauro H. M., Small J. R., Fell D. A. Metabolic control and its analysis. Extensions to the theory and matrix method. Eur J Biochem. 1987 May 15;165(1):215–221. doi: 10.1111/j.1432-1033.1987.tb11214.x. [DOI] [PubMed] [Google Scholar]
  10. Savageau M. A. Mathematics of organizationally complex systems. Biomed Biochim Acta. 1985;44(6):839–844. [PubMed] [Google Scholar]
  11. Voit E. O., Savageau M. A. Accuracy of alternative representations for integrated biochemical systems. Biochemistry. 1987 Oct 20;26(21):6869–6880. doi: 10.1021/bi00395a042. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES