Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Oct 1;263(1):297–299. doi: 10.1042/bj2630297

A kinetic investigation of the acyl-CoA oxidase reaction with the use of a novel spectrophotometric assay. Inhibition by acetyl-CoA, CoA and FMN.

R Hovik 1, H Osmundsen 1
PMCID: PMC1133424  PMID: 2604702

Abstract

A direct-reading spectrophotometric assay for acyl-CoA oxidase activity is described. The assay is based on the strong absorption at 300 nm of deca-2-trans,4-cis-dienoyl-CoA, the product of oxidation of dec-4-cis-enoyl-CoA. By use of this assay, acetyl-CoA, CoA and FMN were found to be inhibitors of acyl-CoA oxidase, but with distinctly different kinetic characteristics.

Full text

PDF
297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bright H. J., Appleby M. The pH dependence of the individual steps in the glucose oxidase reaction. J Biol Chem. 1969 Jul 10;244(13):3625–3634. [PubMed] [Google Scholar]
  2. Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
  3. Cornish-Bowden A. Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett. 1986 Jul 14;203(1):3–6. doi: 10.1016/0014-5793(86)81424-7. [DOI] [PubMed] [Google Scholar]
  4. Hryb D. J., Hogg J. F. Chain length specificities of peroxisomal and mitochondrial beta-oxidation in rat liver. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1200–1206. doi: 10.1016/s0006-291x(79)80034-0. [DOI] [PubMed] [Google Scholar]
  5. Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inestrosa N. C., Bronfman M., Leighton F. Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochem Biophys Res Commun. 1980 Jul 16;95(1):7–12. doi: 10.1016/0006-291x(80)90696-8. [DOI] [PubMed] [Google Scholar]
  7. Kohn M. C., Menten L. E., Garfinkel D. A convenient computer program for fitting enzymatic rate laws to steady-state data. Comput Biomed Res. 1979 Oct;12(5):461–469. doi: 10.1016/0010-4809(79)90032-6. [DOI] [PubMed] [Google Scholar]
  8. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leupold C., Völkl A., Fahimi H. D. Luminometric determination of oxidase activity in peroxisomal fractions of rat liver: glycolate oxidase. Anal Biochem. 1985 Nov 15;151(1):63–69. doi: 10.1016/0003-2697(85)90053-3. [DOI] [PubMed] [Google Scholar]
  10. Neat C. E., Thomassen M. S., Osmundsen H. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient. Biochem J. 1981 Apr 15;196(1):149–159. doi: 10.1042/bj1960149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Osmundsen H., Bjørnstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J. 1985 Sep 1;230(2):329–337. doi: 10.1042/bj2300329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Osmundsen H., Brodal B., Hovik R. A luminometric assay for peroxisomal beta-oxidation. Effects of fasting and streptozotocin-diabetes on peroxisomal beta-oxidation. Biochem J. 1989 May 15;260(1):215–220. doi: 10.1042/bj2600215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Osmundsen H., Neat C. E., Norum K. R. Peroxisomal oxidation of long chain fatty acids. FEBS Lett. 1979 Mar 15;99(2):292–296. doi: 10.1016/0014-5793(79)80975-8. [DOI] [PubMed] [Google Scholar]
  14. Osumi T., Hashimoto T., Ui N. Purification and properties of acyl-CoA oxidase from rat liver. J Biochem. 1980 Jun;87(6):1735–1746. doi: 10.1093/oxfordjournals.jbchem.a132918. [DOI] [PubMed] [Google Scholar]
  15. Reubsaet F. A., Veerkamp J. H., Bukkens S. G., Trijbels J. M., Monnens L. A. Acyl-CoA oxidase activity and peroxisomal fatty acid oxidation in rat tissues. Biochim Biophys Acta. 1988 Feb 19;958(3):434–442. doi: 10.1016/0005-2760(88)90229-9. [DOI] [PubMed] [Google Scholar]
  16. Schremmer S. D., Waser M. R., Kohn M. C., Garfinkel D. A computer program for analyzing enzyme kinetic data using graphical display and statistical analysis. Comput Biomed Res. 1984 Jun;17(3):289–301. doi: 10.1016/s0010-4809(84)80020-8. [DOI] [PubMed] [Google Scholar]
  17. Smith R. H., Powell G. L. The critical micelle concentration of some physiologically important fatty acyl-coenzyme A's as a function of chain length. Arch Biochem Biophys. 1986 Jan;244(1):357–360. doi: 10.1016/0003-9861(86)90124-4. [DOI] [PubMed] [Google Scholar]
  18. Vamecq J., Van Hoof F. Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J. 1984 Jul 1;221(1):203–211. doi: 10.1042/bj2210203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walusimbi-Kisitu M., Harrison E. H. Fluorometric assay for rat liver peroxisomal fatty acyl-coenzyme A oxidase activity. J Lipid Res. 1983 Aug;24(8):1077–1084. [PubMed] [Google Scholar]
  20. Yang S. Y., Cuebas D., Schulz H. 3-Hydroxyacyl-CoA epimerases of rat liver peroxisomes and Escherichia coli function as auxiliary enzymes in the beta-oxidation of polyunsaturated fatty acids. J Biol Chem. 1986 Sep 15;261(26):12238–12243. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES