Abstract
新生儿败血症是常见的感染性疾病,病情严重,病死率高。其发病机制复杂,缺乏特异性表现,培养阳性率低,早期诊断和个体化治疗仍然是临床医生面临的挑战。对双胞胎的流行病学研究表明,遗传因素与新生儿败血症存在关联。基因多态性与其易感性、病情发展和预后密切相关。该文就新生儿败血症相关的白细胞介素、肿瘤坏死因子、Toll样受体、NOD样受体、CD14、髓系细胞触发受体1、甘露糖结合凝集素和其他免疫蛋白基因多态性进行综述,以期促进该疾病的精准医疗。
Keywords: 败血症, 遗传易感性, 基因多态性, 单核苷酸多态性, 新生儿
Abstract
Neonatal sepsis is a common and severe infectious disease with a high mortality rate. Its pathogenesis is complex, lacks specific manifestations, and has a low positive culture rate, making early diagnosis and personalized treatment still a challenge for clinicians. Epidemiological studies on twins have shown that genetic factors are associated with neonatal sepsis. Gene polymorphisms are closely related to susceptibility, disease development, and prognosis. This article provides a review of gene polymorphisms related to neonatal sepsis, including interleukins, tumor necrosis factor, Toll-like receptors, NOD-like receptors, CD14, triggering receptor expressed on myeloid cells-1, mannose-binding lectin, and other immune proteins, aiming to promote precision medicine for this disease.
Keywords: Sepsis, Genetic susceptibility, Gene polymorphism, Single nucleotide polymorphism, Neonate
新生儿败血症(neonatal sepsis, NS)全球发病率约每10万活产儿中2 824例,病死率约17.6%[1]。NS定义为细菌、真菌感染所致全身炎症反应综合征,依据发病时间,分为早发型败血症(early-onset sepsis, EOS)和晚发型败血症(later-onset sepsis, LOS)[2]。大型双胞胎流行病学研究显示遗传因素影响NS易感性,单核苷酸多态性(single nucleotide polymorphism, SNP)已成为NS发生发展的重要因素[3-4]。涉及NS病理过程的关键生物分子,包括细胞因子如白细胞介素(interleukin, IL)、肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)、病原识别成分如Toll样受体(Toll-like receptor, TLR)、髓系细胞触发受体1(triggering receptor expressed on myeloid cells-1, TREM-1),以及其他免疫蛋白如甘露糖结合凝集素(mannose-binding lectin, MBL)、杀菌通透性增加蛋白(bactericidal permeability increasing protein, BPI)、基质金属蛋白酶16(matrix metalloproteinase 16, MMP 16)、维生素D受体(vitamin D receptor, VDR)等。本文就NS相关遗传易感性研究综述如下。
1. 细胞因子相关基因
1.1. IL1B基因
IL-1β介导炎症损伤,参与细胞坏死性凋亡[5-6]。IL1B基因启动子区rs1143627和rs16944完全连锁,rs1143627变异导致转录起始点上游的TATA盒破坏,从而影响基因表达[7]。对471例早产儿的研究显示,rs16944 AA基因型是生后7 d内NS发生的危险因素,与NS死亡相关[8]。内含子区rs1143643影响IL-1β水平[9]。Allam等[10]发现rs1143627的CC基因型和C等位基因是培养阳性EOS的易感因素。Mustarim等[11]认为rs1143643与NS的发病率相关,但研究样本量小,结局未以OR值表示。一项关于299例意大利早产儿的队列研究发现,具有rs1143643 TT和CT基因型者NS风险显著增加[12]。然而Abu-Maziad等[13]的更大样本的研究和一项国内研究[14]显示rs1143627和rs1143643与NS无关。IL1B基因多态性的研究可能受到不同特征新生儿人群、种族背景或样本量大小的影响。而且无活性的IL-1β前体需要通过炎症小体加工,成为活性因子后被释放[15],所以其活性还受炎症小体相关基因的影响。
1.2. IL6基因
IL-6促炎细胞因子在NS患儿中高水平表达且被认为与病情严重程度呈正相关[6,16]。大多数研究仅涉及IL6基因启动子区rs1800795,部分未发现其与NS相关[8,12-13]。一项极早产儿队列研究显示,GG基因型是NS的易感因素,调整混杂因素后结果依然显著[17]。Allam等[10]和Ahrens等[18]两项研究结论与之相同,且Allam等[10]发现G等位基因增加EOS感染风险,Ahrens等[18]发现G等位基因增加了无抗生素预防的革兰氏阳性(Gram-positive, G+)菌感染以及多次培养阳性NS的风险,二者均显示GG基因型与高水平IL-6相关。但也有两项研究结论相反,认为C等位基因、CC基因型增加了培养阳性NS风险[19-20]。IL-6水平、IL6基因型与疾病易感性三者之间的关系仍不明确,可能与IL6的分位数依赖性表达相关,即随着IL-6水平的不同,预计会产生不同程度的遗传效应[21]。
1.3. CXCL8基因
IL-8由上皮和巨噬细胞产生,具有招募、激活中性粒细胞从而调节炎症反应和促进血管生成的能力[6,22]。编码基因CXCL8中研究最广的是启动子区rs4073,其影响脂多糖(lipopolysaccharide, LPS)刺激时IL-8水平,从而在感染疾病中起重要作用[23]。国内研究显示TT基因型增加NS风险[23]。Esposito等[12]发现在早产儿中AT基因型加重了NS的发展,而Abu-Maziad等[13]针对更大规模的早产儿群体研究未发现二者间的联系。IL-8相关基因多态性研究较少且结论不一。
1.4. IL10基因
IL-10通过抑制抗原呈递,抑制促炎因子释放等发挥抗炎作用[6,24]。IL10基因启动子区rs1800896、rs1800871和rs1800872连锁不平衡,组成3种单倍型GCC、ACC和ATA,分别与高中低水平IL-10相关[19]。关于293例极低出生体重(very low birth weight, VLBW)早产儿的队列研究显示,rs1800896 A等位基因与LOS发病风险增高相关[19]。Abu-Maziad等[13]发现,rs1800896与NS相关,但在调整胎龄后关联性消失,亚组分析显示A等位基因与革兰氏阴性(Gram-negative, G-)菌感染相关。Esposito等[12]研究未发现rs1800896与NS相关。国内研究也显示rs1800872、rs1800896与NS易感性无关[25]。IL10与NS关联研究需关注其连锁不平衡和单倍型。
1.5. TNF基因
TNF-α是由单核、巨噬细胞分泌的促炎因子,可快速启动宿主防御,对抗多种病原[6]。TNF-α表达水平与NS危重程度呈正相关[26]。对TNF基因研究最广泛的rs1800629位于转录起始位点上游。一项关于471例早产儿的研究显示,A等位基因与TNF-α高表达相关且增加NS发生风险[27]。另一项关于173例机械通气的VLBW早产儿的研究显示,A等位基因增加NS死亡风险[28]。相反的是,Allam等[10]认为GG基因型和G等位基因增加EOS感染风险,A等位基因与低水平TNF-α相关。
2. 模式识别受体相关基因
2.1. TLR2、TLR4、TLR5基因
TLR是Ⅰ型跨膜糖蛋白,可识别多种病原成分以及内源性配体[29]。与足月儿相比,早产儿脐带血中的TLR相关基因显著下调[30]。其多态性与感染和炎性疾病有关[31-33]。
TLR2与TLR1或TLR6组成异源二聚体,识别G+菌肽聚糖和磷壁酸[29]。TLR2基因非同义变异rs121917864和rs5743708与TLR2信号转导受损相关[34]。rs121917864在非洲和亚洲人群中常见,在白种人中几乎不存在。NS相关的TLR2 SNP还包括同义变异rs3804099和rs3804100。Abu-Maziad等[13]研究显示,rs3804099多态性与NS相关,rs3804099、rs3804100等位基因和单倍型与G+菌感染相关,但以胎龄分层分析后,以上关联均消失。一项无分层的国内研究显示rs3804099位点TT基因型是NS易感的独立危险因素[35]。另一国内研究不支持rs5743708、rs3804099与NS相关[36]。鉴于既往研究认为TLR2基因多态性与种族、胎龄密切相关,分层分析有利于揭示其与NS之间的本质联系。
TLR4可识别G-菌的LPS和真菌的甘露聚糖[29,37]。TLR4基因中错义变异rs4986790、rs4986791可改变LPS识别域结构,降低TLR4表达和LPS诱导的细胞因子反应,增加G-菌感染易感性[29,37]。TLR4水平升高与NS患儿肝功能、心肌受损相关[38]。Sampath等[37]多中心研究证实rs4986790单独或和rs4986791共同存在与VLBW早产儿的G-菌感染有关。一项最新荟萃分析认为rs4986791与培养阳性NS有关[39]。不过以上结论并未得到其他研究者的支持。Sampath等[37]发现,与TLR4协作调节下游信号的IL-1受体相关蛋白激酶1的rs1059703 CT基因型与G-菌感染较少有关。因此,还应注意TLR4通路中其他基因可能具有的协同作用。
TLR5主要识别病原体膜成分,如鞭毛蛋白[29,36]。TLR5基因外显子区rs5744168为无义变异,导致整个跨膜结构域和细胞质信号尾部缺失,功能丧失[31]。但有研究认为,rs5744168变异在某些人群中高达23%,表明功能被其他基因部分补偿,即TLR5存在功能冗余[40]。多态性研究也显示rs5744168与NS之间无关联[37]。Abu-Maziad等[13]发现另一内含子区rs5744105未调整胎龄时与NS相关。但国内研究不支持该关联[36]。
2.2. NOD1、NOD2基因
NOD样受体是一类胞内模式识别受体,其中研究广泛的NOD1和NOD2具有不同的免疫活性,主要通过识别细菌胞壁肽聚糖的不同降解成分参与宿主免疫反应[41]。除了病原相关分子模式外,损伤相关分子模式、炎症信号也可作为NOD的配体,激活NF-κB、MAPK下游信号通路,增加促炎因子和趋化因子分泌[41]。一项关于764例早产儿的队列研究显示,NOD1 rs6958571与白种人和超低出生体重婴儿的G+菌感染相关[42]。一项前瞻性研究发现NOD2 3020insC具有临界意义(P=0.052),可能与培养阳性NS存在关联[18]。
2.3. CD14基因
吞噬细胞上的CD14与LPS结合蛋白一起激活先天宿主防御。绝大多数研究者并未发现CD14基因rs2569190与NS易感关联[11,18,43]。而Baier等[19]针对不同种族机械通气VLBW新生儿的研究显示,CD14基因rs2569190的TT基因型可能与美国非裔新生儿多次血培养阳性相关。Esposito等[12]认为CD14基因rs2569190是重症NS的危险因素,与既往荟萃分析显示rs2569190在重症脓毒症和不良结局患者中更常见结果相同[44]。
2.4. TREM1基因
TREM-1是近年发现的新型模式识别受体,既可独立触发下游炎症级联反应,也可与TLR信号协同作用放大炎症效应,与多种感染、炎症性疾病的发生发展密切相关[45-46]。Xiao等[47]发现TREM1基因rs2234246位点T等位基因是培养阳性NS的风险因素,调整混杂因素后风险仍为1.38倍,同时发现NS组血清TREM-1水平升高与rs2234246相关。国内研究也显示NS患儿血清TREM-1水平异常增高与疾病存在相关性[48]。
3. 其他免疫蛋白相关基因
3.1. MBL2基因
MBL是肝脏产生的先天免疫蛋白,可以激活补体并促进调理吞噬[49]。MBL2基因中外显子1的rs1800450、rs1800451和rs5030737(统称为A/O型),以及启动子区的rs11003125、rs7096206和rs7095891连锁不平衡,组合产生多种单倍型,MBL水平不同[49]。MBL2基因分型与血清MBL水平、胎龄相关[50]。最新荟萃分析显示以上位点仅rs1800450与NS相关,但依据胎龄分层分析后该关联性消失且各项研究结果差异较大[49]。有研究认为突变型早产儿G-菌感染相关的LOS发生率较高[51];有研究发现T等位基因增加NS风险[52];有研究认为突变型与NS,尤其是EOS有关[53]。一项关于6 878例VLBW早产儿的队列研究显示,调整胎龄后外显子1为OO型的新生儿G-菌感染风险增加[50]。Xue等[54]发现启动子区中rs7096206与MBL表达水平相关且可能是NS的易感因素。其他研究未显示MBL2多态性与NS存在关联。总之,由于MBL2潜在的发育调控且位点间连锁不平衡,调整胎龄和单倍型分析至关重要。
3.2. BPI基因
BPI常见于中性粒细胞的嗜氮颗粒,是脱颗粒释放的单链阳离子蛋白[55]。与LPS高度保守的脂质A区域结合,介导G-菌的膜损伤并中和LPS的内毒素活性,减弱炎症反应[55]。Ederer等[55]发现BPI基因rs4358188变异型增加中和LPS的效率。然而有研究认为与G-菌感染时BPI的抗炎作用不同,BPI可能增强G+菌感染时免疫反应[56]。Esposito等[12]研究显示,rs4358188 AG基因型与早产儿总体NS风险降低有关,另一位点rs1341023 CC、CT基因型增加G-菌感染的NS风险。这一发现符合rs4358188变异增加LPS中和效率的结论。然而,其他研究如Abu-Maziad等[13]和Mustarim等[11]并未发现rs4358188与NS存在关联。因此,鉴于BPI在G+菌与G-菌感染之间的功能差异,BPI基因多态性对NS的影响尚需进一步的机制研究,以及依据菌群分层分析。
3.3. MMP16基因
MMP16属于MMP蛋白酶家族的胶原酶,可以切割Ⅰ~Ⅳ型和Ⅺ型纤维胶原蛋白,降解细胞外基质[55-58]。MMP已被证明在免疫调节中发挥重要生物学作用,且与其降解能力无关[57]。目前MMP16遗传变异与感染性疾病的易感性研究很少。Esposito等[12]研究显示rs2664349 GG基因型与早产儿NS,尤其是培养阳性NS风险显著相关。而Mustarim等[11]关于60例早产儿的队列研究未发现二者之间的关联。除了SNP外,DNA甲基化、组蛋白修饰和非编码RNA等表观遗传机制也影响MMP16基因表达[58]。对于MMP的遗传相关研究应注意表观遗传的潜在共同影响。
3.4. VDR基因
维生素D除了维持钙稳态和影响骨矿化,还有免疫调节、抗菌和抗炎特性。维生素D缺乏与儿童脓毒症、NS显著相关[59-60]。而VDR几乎存在于所有免疫细胞中,介导维生素D的细胞作用,VDR基因多态性可能影响维生素D免疫调节功能。一项关于300例足月儿的病例对照研究发现,NS组维生素D水平明显低于对照组,VDR 基因rs739837 G等位基因是培养阳性NS的危险因素,但与预后无关[47]。Tayel等[61]探索了80对母婴的维生素D水平、VDR基因多态性与培养阳性EOS的关系,发现病例组母婴维生素D水平显著降低,足月儿rs2228570的TT基因型和T等位基因可增加EOS风险,母婴rs731236与EOS均无任何关联。VDR基因多态性研究在新生儿开展并不广泛,尚缺乏关联证据。
2003—2023年期间NS基因多态性研究文献复习汇总见表1。
表1.
NS基因多态性研究文献复习汇总(2003—2023年)
文献 | 基因 | 位点 | 重要结果 |
---|---|---|---|
赵晓芬等2023[25] | IL10 |
rs1800872 rs1800896 |
未发现任何关联 |
徐征等2023[35] | TLR2 | rs3804099* | TT基因型增加NS发生风险 |
Xiao等2022[47] | VDR | rs739837* | rs739837 G等位基因、rs2234246 T等位基因均增加NS发生风险 |
TREM1 | rs2234246* | ||
Varljen等2020[8] | IL1B | rs16944*# | AA基因型增加生后7 d内NS发生和死亡风险 |
赵晓芬等2020[14] | IL1B |
rs1143627 rs1143643 |
未发现任何关联 |
赵晓芬等2020[23] | CXCL8 | rs4073* | TT基因型增加NS发生风险 |
Dogan等2020[51] | MBL2 | rs1800450† | 突变型早产儿的G-菌LOS发病率较高 |
Varljen等2019[27] | IL6 | rs1800795 | rs1800629多态性增加NS发生风险 |
TNF | rs1800629* | ||
Mustarim等2019[11] | IL1B | rs1143643* | rs1143643多态性存在组间差异 |
CD14 | rs2569190 | ||
BPI | rs4358188 | ||
MMP16 | rs2664349 | ||
Tayel等2018[61] | VDR |
rs2228570* rs731236 |
rs2228570 TT基因型和T等位基因增加EOS风险 |
Hartz等2017[50] | MBL2 | 外显子1基因多态性† | 调整胎龄后OO型新生儿G-菌感染风险增加 |
Xue等2017[54] | MBL2 |
rs7096206* rs7095891 |
rs7096206多态性增加NS发生风险 |
王晓蕾等2015[36] | TLR2 |
rs5743708 rs3804099 |
未发现任何关联 |
TLR5 | rs5744105 | ||
Allam等2015[10] | IL1B | rs1143627* | rs1143627 CC基因型和C等位基因、rs1800795 G等位基因、rs1800629 GG基因型和G等位基因增加EOS风险 |
IL6 | rs1800795* | ||
TNF | rs1800629* | ||
Esposito等2014[12] | IL1B | rs1143643* | rs1143643 TT和CT基因型、rs2664349 GG基因型增加NS风险;rs4073 AT基因型和rs2569190 GG基因型增加重症NS风险;rs4358188 AG基因型降低总NS风险;rs1341023 CC、CT基因型增加G-菌感染风险 |
CXCL8 | rs4073# | ||
CD14 | rs2569190# | ||
BPI |
rs4358188* rs1341023† |
||
MMP16 | rs2664349* | ||
Sampath等2013[37] | TLR2 | rs5743708 | rs4986790单独或/和rs4986791共同存在增加VLBW早产儿G-菌感染风险 |
TLR4 |
rs4986790† rs4986791† |
||
TLR5 | rs5744168 | ||
Özkan等2012[52] | MBL2 | rs1800450* | T等位基因增加NS风险 |
Koroglu等2010[53] | MBL2 | rs1800450* | 突变型增加NS、EOS风险 |
Abu-Maziad等2010[13] | TLR2 |
rs3804099*† rs3804100† |
rs3804099、rs5744105与NS相关;rs3804099、rs3804100与G+菌感染相关;rs1800896与G-菌感染相关 |
TLR5 | rs5744105* | ||
IL10 | rs1800896*† | ||
Reiman等2008[20] | IL6 | rs1800795* | CC基因型增加培养阳性NS风险 |
Baier等2006[19] | IL6 | rs1800795* | rs1800795 C等位基因增加培养阳性NS风险 |
IL10 | rs1800896* | rs1800896 A等位基因增加LOS风险 | |
CD14 | rs2569190§ | rs2569190 TT基因型与美国非裔新生儿NS多次培养阳性相关 | |
Hedberg等2004[28] | TNF | rs1800629# | A等位基因增加NS死亡风险 |
Ahrens等2004[18] | IL6 | rs1800795*†§ | rs1800795 G等位基因增加总体NS、无抗生素预防的G+菌感染及多次培养阳性NS风险 |
TLR4 | rs4986790 | ||
NOD2 | 3020insC | ||
CD14 | rs2569190 | ||
MBL2 |
rs1800450 rs1800451 rs5030737 |
||
Harding等2003[17] | IL6 | rs1800795* | GG基因型增加培养阳性NS风险 |
注:[NS]新生儿败血症;[LOS]晚发型败血症;[EOS]早发型败血症;[VLBW]极低出生体重。*NS易感性相关;#NS严重程度或所致死亡相关;†G-菌或G+菌易感性相关;§NS多次培养阳性相关。
4. 结语
NS的发生发展涉及多种免疫功能、细胞因子、信号蛋白通路,越来越多的研究在探索其遗传易感因素。虽然目前受种族、胎龄、出生体重、诊断标准不同和样本量不足等因素的影响,各研究间的结果存在明显异质性,但依然为基因和疾病之间的内在联系提供了进一步解释,有助于分层管理和及时诊断,促进将来个体化精准治疗的实现。而针对研究中的问题,通过人群特征分层以及荟萃分析方法修正差异,同时进行大样本、高质量的研究依然是未来努力的方向。
基金资助
天津市教委科研计划项目(2022YGYB12);天津市科技计划项目(21JCYBJC00370);天津市医学重点学科(专科)建 设项目(TJYXZDXK-040A)。
利益冲突声明
所有作者声明不存在利益冲突关系。
作者贡献
高静负责文章撰写、修改;舒剑波负责文章审阅、修改;刘洋负责选题、文章审阅。
参 考 文 献
- 1. Fleischmann C, Reichert F, Cassini A, et al. Global incidence and mortality of neonatal sepsis: a systematic review and meta-analysis[J]. Arch Dis Child, 2021, 106(8): 745-752. DOI: 10.1136/archdischild-2020-320217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. 中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会 . 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257. DOI: 10.3760/cma.j.issn.0578-1310.2019.04.005. [DOI] [PubMed] [Google Scholar]
- 3. Dai W, Zhou W. A narrative review of precision medicine in neonatal sepsis: genetic and epigenetic factors associated with disease susceptibility[J]. Transl Pediatr, 2023, 12(4): 749-767. DOI: 10.21037/tp-22-369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Borghesi A, Marzollo A, Michev A, et al. Susceptibility to infection in early life: a growing role for human genetics[J]. Hum Genet, 2020, 139(6-7): 733-743. DOI: 10.1007/s00439-019-02109-2. [DOI] [PubMed] [Google Scholar]
- 5. Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity[J]. Immunity, 2019, 50(4): 778-795. DOI: 10.1016/j.immuni.2019.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. DOI: 10.1056/NEJMra2026131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Behzadi P, Sameer AS, Nissar S, et al. The interleukin-1 (IL-1) superfamily cytokines and their single nucleotide polymorphisms (SNPs)[J]. J Immunol Res, 2022, 2022: 2054431. DOI: 10.1155/2022/2054431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Varljen T, Sekulovic G, Rakic O, et al. Genetic variant rs16944 in IL1B gene is a risk factor for early-onset sepsis susceptibility and outcome in preterm infants[J]. Inflamm Res, 2020, 69(2): 155-157. DOI: 10.1007/s00011-019-01301-4. [DOI] [PubMed] [Google Scholar]
- 9. Rong H, He X, Wang L, et al. Association between IL1B polymorphisms and the risk of rheumatoid arthritis[J]. Int Immunopharmacol, 2020, 83: 106401. DOI: 10.1016/j.intimp.2020.106401. [DOI] [PubMed] [Google Scholar]
- 10. Allam G, Alsulaimani AA, Alzaharani AK, et al. Neonatal infections in Saudi Arabia: association with cytokine gene polymorphisms[J]. Cent Eur J Immunol, 2015, 40(1): 68-77. DOI: 10.5114/ceji.2015.50836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Mustarim M, Yanwirasti Y, Jamsari J, et al. Association of gene polymorphism of bactericidal permeability increasing protein rs4358188, cluster of differentiation 14 rs2569190, interleukin 1β rs1143643 and matrix metalloproteinase-16 rs2664349 with neonatal sepsis[J]. Open Access Maced J Med Sci, 2019, 7(17): 2728-2733. DOI: 10.3889/oamjms.2019.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Esposito S, Zampiero A, Pugni L, et al. Genetic polymorphisms and sepsis in premature neonates[J]. PLoS One, 2014, 9(7): e101248. DOI: 10.1371/journal.pone.0101248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Abu-Maziad A, Schaa K, Bell EF, et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis[J]. Pediatr Res, 2010, 68(4): 323-329. DOI: 10.1203/PDR.0b013e3181e6a068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. 赵晓芬, 周星, 张焱, 等. IL-1β基因单核苷酸多态性与足月新生儿败血症的相关性研究[J]. 中国儿童保健杂志, 2020, 28(1): 65-69. DOI: 10.11852/zgetbjzz2019-0513. [DOI] [Google Scholar]
- 15. Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation[J]. Trends Biochem Sci, 2023, 48(4): 331-344. DOI: 10.1016/j.tibs.2022.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. 冯一川, 陈宁, 任冲, 等. 血乳酸和血清CRP、IL-6在新生儿败血症中的表达意义[J]. 中国实用医刊, 2021, 48(23): 5-8. DOI: 10.3760/cma.j.cn115689-20210807-02586. [DOI] [Google Scholar]
- 17. Harding D, Dhamrait S, Millar A, et al. Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants?[J]. Pediatrics, 2003, 112(4): 800-803. DOI: 10.1542/peds.112.4.800. [DOI] [PubMed] [Google Scholar]
- 18. Ahrens P, Kattner E, Köhler B, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants[J]. Pediatr Res, 2004, 55(4): 652-656. DOI: 10.1203/01.PDR.0000112100.61253.85. [DOI] [PubMed] [Google Scholar]
- 19. Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants[J]. BMC Med, 2006, 4: 10. DOI: 10.1186/1741-7015-4-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Reiman M, Kujari H, Ekholm E, et al. Interleukin-6 polymorphism is associated with chorioamnionitis and neonatal infections in preterm infants[J]. J Pediatr, 2008, 153(1): 19-24. DOI: 10.1016/j.jpeds.2008.02.009. [DOI] [PubMed] [Google Scholar]
- 21. Williams PT. Quantile-dependent expressivity of serum interleukin-6 concentrations as a possible explanation of gene-disease interactions, gene-environment interactions, and pharmacogenetic effects[J]. Inflammation, 2022, 45(3): 1059-1075. DOI: 10.1007/s10753-021-01601-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: an evolving chemokine[J]. Cytokine, 2022, 153: 155828. DOI: 10.1016/j.cyto.2022.155828. [DOI] [PubMed] [Google Scholar]
- 23. 赵晓芬, 朱双燕, 胡浩, 等. IL-8基因rs4073位点多态性与新生儿败血症易感性的关系[J]. 中国当代儿科杂志, 2020, 22(4): 323-327. DOI: 10.7499/j.issn.1008-8830.1910068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Yeung ST, Ovando LJ, Russo AJ, et al. CD169+ macrophage intrinsic IL-10 production regulates immune homeostasis during sepsis[J]. Cell Rep, 2023, 42(3): 112171. DOI: 10.1016/j.celrep.2023.112171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. 赵晓芬, 杨米凤, 赵朋娜, 等. IL-10基因多态性与足月新生儿败血症易感性的相关性[J]. 医学临床研究, 2023, 40(3): 321-324. DOI: 10.3969/j.issn.1671-7171.2023.03.001. [DOI] [Google Scholar]
- 26. 刘峰, 张靖宇, 任红玲. PCT、TNF-α、CRP、sTNFR-Ⅱ在新生儿败血症中的表达水平及其临床意义[J]. 中国实用医刊, 2021, 48(15): 89-92. DOI: 10.3760/cma.j.cn115689-20210410-01339. [DOI] [Google Scholar]
- 27. Varljen T, Rakic O, Sekulovic G, et al. Association between tumor necrosis factor-α promoter -308 G/A polymorphism and early onset sepsis in preterm infants[J]. Tohoku J Exp Med, 2019, 247(4): 259-264. DOI: 10.1620/tjem.247.259. [DOI] [PubMed] [Google Scholar]
- 28. Hedberg CL, Adcock K, Martin J, et al. Tumor necrosis factor alpha-308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants[J]. Pediatr Infect Dis J, 2004, 23(5): 424-428. DOI: 10.1097/01.inf.0000122607.73324.20. [DOI] [PubMed] [Google Scholar]
- 29. Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774. DOI: 10.3389/fimmu.2022.812774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Gródecka-Szwajkiewicz D, Ulańczyk Z, Zagrodnik E, et al. Comparative analysis of global gene expression and complement components levels in umbilical cord blood from preterm and term neonates: implications for significant downregulation of immune response pathways related to prematurity[J]. Int J Med Sci, 2020, 17(12): 1840-1853. DOI: 10.7150/ijms.46339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Zhang Y, Liu J, Wang C, et al. Toll-like receptors gene polymorphisms in autoimmune disease[J]. Front Immunol, 2021, 12: 672346. DOI: 10.3389/fimmu.2021.672346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Behairy MY, Abdelrahman AA, Toraih EA, et al. Investigation of TLR2 and TLR4 polymorphisms and sepsis susceptibility: computational and experimental approaches[J]. Int J Mol Sci, 2022, 23(18): 10982. DOI: 10.3390/ijms231810982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Mhmoud NA. Association of toll-like receptors 1, 2, 4, 6, 8, 9 and 10 genes polymorphisms and susceptibility to pulmonary tuberculosis in sudanese patients[J]. Immunotargets Ther, 2023, 12: 47-75. DOI: 10.2147/ITT.S404915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Aluri J, Cooper MA, Schuettpelz LG. Toll-like receptor signaling in the establishment and function of the immune system[J]. Cells, 2021, 10(6): 1374. DOI: 10.3390/cells10061374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. 徐征, 杜晨, 高宇, 等. TLR2、IRF-5基因多态性对新生儿败血症易感性的影响及交互作用[J]. 中国医师杂志, 2023, 25(7): 1025-1029. DOI: 10.3760/cma.j.cn431274-20220609-00547. [DOI] [Google Scholar]
- 36. 王晓蕾, 章乐, 李雅雯, 等. Toll样受体2及5基因单核苷酸多态性与新生儿败血症易感性的研究[J]. 中国当代儿科杂志, 2015, 17(12): 1316-1321. DOI: 10.7499/j.issn.1008-8830.2015.12.012. [DOI] [PubMed] [Google Scholar]
- 37. Sampath V, Mulrooney NP, Garland JS, et al. Toll-like receptor genetic variants are associated with gram-negative infections in VLBW infants[J]. J Perinatol, 2013, 33(10): 772-777. DOI: 10.1038/jp.2013.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. 程雪莲. TLR4、SAA水平在新生儿败血症中的变化及与心肌、肝功能受损的关系[J]. 实验与检验医学, 2019, 37(5): 862-864. DOI: 10.3969/j.issn.1674-1129.2019.05.028. [DOI] [Google Scholar]
- 39. Sljivancanin Jakovljevic T, Martic J, Jacimovic J, et al. Association between innate immunity gene polymorphisms and neonatal sepsis development: a systematic review and meta-analysis[J]. World J Pediatr, 2022, 18(10): 654-670. DOI: 10.1007/s12519-022-00569-7. [DOI] [PubMed] [Google Scholar]
- 40. Pinheiro A, Águeda-Pinto A, Melo-Ferreira J, et al. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups[J]. BMC Evol Biol, 2019, 19(1): 221. DOI: 10.1186/s12862-019-1547-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Kienes I, Johnston EL, Bitto NJ, et al. Bacterial subversion of NLR-mediated immune responses[J]. Front Immunol, 2022, 13: 930882. DOI: 10.3389/fimmu.2022.930882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Sampath V, Mulrooney N, Patel AL, et al. A potential role for the NOD1 variant (rs6958571) in gram-positive blood stream infection in ELBW infants[J]. Neonatology, 2017, 112(4): 354-358. DOI: 10.1159/000477433. [DOI] [PubMed] [Google Scholar]
- 43. Martin SL, Desai S, Nanavati R, et al. Innate immune gene polymorphisms and their association with neonatal sepsis[J]. Infect Genet Evol, 2018, 62: 205-210. DOI: 10.1016/j.meegid.2018.04.037. [DOI] [PubMed] [Google Scholar]
- 44. Zhang AQ, Yue CL, Gu W, et al. Association between CD14 promoter-159C/T polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis[J]. PLoS One, 2013, 8(8): e71237. DOI: 10.1371/journal.pone.0071237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Siskind S, Brenner M, Wang P. TREM-1 modulation strategies for sepsis[J]. Front Immunol, 2022, 13: 907387. DOI: 10.3389/fimmu.2022.907387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. 马丽, 董良, 游志坚, 等. 槲皮素抑制TREM-1激活巨噬细胞炎症反应及减轻LPS诱导小鼠急性肺损伤的研究[J]. 中国医师杂志, 2022, 24(2): 206-211. DOI: 10.3760/cma.j.cn431274-20210918-00999. [DOI] [Google Scholar]
- 47. Xiao L, Que S, Mu L, et al. The relationship between vitamin D receptor gene and TREM-1 gene polymorphisms and the susceptibility and prognosis of neonatal sepsis[J]. J Clin Lab Anal, 2022, 36(5): e24405. DOI: 10.1002/jcla.24405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. 王文英, 李艳阳, 王莹莹. 新生儿败血症血清PCT、sTREM-1的表达及其与炎症反应相关分析[J]. 实验与检验医学, 2021, 39(4): 968-970. DOI: 10.3969/j.issn.1674-1129.2021.04.063. [DOI] [Google Scholar]
- 49. Ma J, Xu R, Xie Y, et al. The association between mannose binding lectin gene polymorphisms and the risk of neonatal sepsis: an updated meta-analysis[J]. Heliyon, 2023, 9(4): e14905. DOI: 10.1016/j.heliyon.2023.e14905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Hartz A, Pagel J, Humberg A, et al. The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants[J]. PLoS One, 2017, 12(5): e0178032. DOI: 10.1371/journal.pone.0178032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Dogan P, Ozkan H, Koksal N, et al. Mannose-binding lectin gene polymorphism and its effect on short term outcomes in preterm infants[J]. J Pediatr (Rio J), 2020, 96(4): 520-526. DOI: 10.1016/j.jped.2019.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Özkan H, Köksal N, Çetinkaya M, et al. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia[J]. J Perinatol, 2012, 32(3): 210-217. DOI: 10.1038/jp.2011.79. [DOI] [PubMed] [Google Scholar]
- 53. Koroglu OA, Onay H, Erdemir G, et al. Mannose-binding lectin gene polymorphism and early neonatal outcome in preterm infants[J]. Neonatology, 2010, 98(4): 305-312. DOI: 10.1159/000291487. [DOI] [PubMed] [Google Scholar]
- 54. Xue H, Xue X, Yang C, et al. Low serum mannose binding lectin (MBL) levels and -221 YX genotype of MBL2 gene are susceptible to neonatal sepsis in the Chinese Han population[J]. Iran J Pediatr, 2017, 27(3): e9448. DOI: 10.5812/ijp.9448. [DOI] [Google Scholar]
- 55. Ederer KU, Holzinger JM, Maier KT, et al. A polymorphism of bactericidal/permeability-increasing protein affects its neutralization efficiency towards lipopolysaccharide[J]. Int J Mol Sci, 2022, 23(3): 1324. DOI: 10.3390/ijms23031324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Theprungsirikul J, Skopelja-Gardner S, Rigby WFC. Killing three birds with one BPI: bactericidal, opsonic, and anti-inflammatory functions[J]. J Transl Autoimmun, 2021, 4: 100105. DOI: 10.1016/j.jtauto.2021.100105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. de Almeida LGN, Thode H, Eslambolchi Y, et al. Matrix metalloproteinases: from molecular mechanisms to physiology, pathophysiology, and pharmacology[J]. Pharmacol Rev, 2022, 74(3): 712-768. DOI: 10.1124/pharmrev.121.000349. [DOI] [PubMed] [Google Scholar]
- 58. He J, Qin M, Chen Y, et al. Epigenetic regulation of matrix metalloproteinases in inflammatory diseases: a narrative review[J]. Cell Biosci, 2020, 10: 86. DOI: 10.1186/s13578-020-00451-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Xiao D, Zhang X, Ying J, et al. Association between vitamin D status and sepsis in children: a meta-analysis of observational studies[J]. Clin Nutr, 2020, 39(6): 1735-1741. DOI: 10.1016/j.clnu.2019.08.010. [DOI] [PubMed] [Google Scholar]
- 60. 刘晓丽, 丁亚星, 刘晓方. 新生儿早发型败血症血清25(OH)D与免疫球蛋白水平的变化[J]. 医学理论与实践, 2020, 33(6): 878-880. DOI: 10.19381/j.issn.1001-7585.2020.06.007. [DOI] [Google Scholar]
- 61. Tayel SI, Soliman SE, Elsayed HM. Vitamin D deficiency and vitamin D receptor variants in mothers and their neonates are risk factors for neonatal sepsis[J]. Steroids, 2018, 134: 37-42. DOI: 10.1016/j.steroids.2018.03.003. [DOI] [PubMed] [Google Scholar]