Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Nov 1;263(3):731–736. doi: 10.1042/bj2630731

Effects of oxyradicals on oxymyoglobin. Deoxygenation, haem removal and iron release.

M R Prasad 1, R M Engelman 1, R M Jones 1, D K Das 1
PMCID: PMC1133493  PMID: 2557008

Abstract

We have examined the effects of O2-derived free radicals on oxymyoglobin, the myocardial intracellular protein involved in the storage and transport of O2. The oxyradicals generated by the xanthine/xanthine oxidase system decreased the concentration of oxymyoglobin. Based on the decreases in absorbance peaks at 581 nm and 415 nm it is estimated that out of a 10 nmol decrease in oxymyoglobin, 5 nmol appears to be oxidized to ferrimyoglobin (deoxygenation), while haem was removed from the other 5 nmol of haem protein. These processes were inhibited by both catalase alone and superoxide dismutase in combination with catalase, but not by either superoxide dismutase alone or deferoxamine. These results suggest that among H2O2, OH. and O2.-, only H2O2 causes the removal of haem and the oxidation of oxymyoglobin. Furthermore, the oxyradicals also released 3 microM free iron from oxymyoglobin, which is at least 5-fold less than the 15 nmol loss of oxymyoglobin. The loss of oxymyoglobin also preceded the release of free iron. These results indicate that oxymyoglobin oxidation and haem removal occur before the removal of free iron. Thus myoglobin appears to be highly susceptible to free radical attack, and this may represent yet another mechanism of free radical-mediated cellular injury.

Full text

PDF
731

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham N. G., Pinto A., Levere R. D., Mullane K. Identification of heme oxygenase and cytochrome P-450 in the rabbit heart. J Mol Cell Cardiol. 1987 Jan;19(1):73–81. doi: 10.1016/s0022-2828(87)80546-1. [DOI] [PubMed] [Google Scholar]
  2. Biemond P., van Eijk H. G., Swaak A. J., Koster J. F. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J Clin Invest. 1984 Jun;73(6):1576–1579. doi: 10.1172/JCI111364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolann B. J., Ulvik R. J. Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical. Biochem J. 1987 Apr 1;243(1):55–59. doi: 10.1042/bj2430055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Das D. K., Engelman R. M., Clement R., Otani H., Prasad M. R., Rao P. S. Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun. 1987 Oct 14;148(1):314–319. doi: 10.1016/0006-291x(87)91112-0. [DOI] [PubMed] [Google Scholar]
  5. Das D. K., Engelman R. M., Rousou J. A., Breyer R. H., Otani H., Lemeshow S. Pathophysiology of superoxide radical as potential mediator of reperfusion injury in pig heart. Basic Res Cardiol. 1986 Mar-Apr;81(2):155–166. doi: 10.1007/BF01907380. [DOI] [PubMed] [Google Scholar]
  6. Davies K. J., Delsignore M. E., Lin S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem. 1987 Jul 15;262(20):9902–9907. [PubMed] [Google Scholar]
  7. Davies K. J., Lin S. W., Pacifici R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J Biol Chem. 1987 Jul 15;262(20):9914–9920. [PubMed] [Google Scholar]
  8. Di Iorio E. E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 1981;76:57–72. doi: 10.1016/0076-6879(81)76114-7. [DOI] [PubMed] [Google Scholar]
  9. Gutteridge J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986 Jun 9;201(2):291–295. doi: 10.1016/0014-5793(86)80626-3. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann M. E., Mello-Filho A. C., Meneghini R. Correlation between cytotoxic effect of hydrogen peroxide and the yield of DNA strand breaks in cells of different species. Biochim Biophys Acta. 1984 Apr 5;781(3):234–238. doi: 10.1016/0167-4781(84)90088-5. [DOI] [PubMed] [Google Scholar]
  12. Kramer J. H., Mak I. T., Weglicki W. B. Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ Res. 1984 Jul;55(1):120–124. doi: 10.1161/01.res.55.1.120. [DOI] [PubMed] [Google Scholar]
  13. Kukreja R. C., Okabe E., Schrier G. M., Hess M. L. Oxygen radical-mediated lipid peroxidation and inhibition of Ca2+-ATPase activity of cardiac sarcoplasmic reticulum. Arch Biochem Biophys. 1988 Mar;261(2):447–457. doi: 10.1016/0003-9861(88)90361-x. [DOI] [PubMed] [Google Scholar]
  14. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  15. Minotti G., Aust S. D. The role of iron in the initiation of lipid peroxidation. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):191–208. doi: 10.1016/0009-3084(87)90050-8. [DOI] [PubMed] [Google Scholar]
  16. Pryor W. A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol. 1986;48:657–667. doi: 10.1146/annurev.ph.48.030186.003301. [DOI] [PubMed] [Google Scholar]
  17. Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem J. 1988 Jan 1;249(1):185–190. doi: 10.1042/bj2490185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Puppo A., Halliwell B. Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide? Free Radic Res Commun. 1988;4(6):415–422. doi: 10.3109/10715768809066910. [DOI] [PubMed] [Google Scholar]
  19. Rao P. S., Cohen M. V., Mueller H. S. Production of free radicals and lipid peroxides in early experimental myocardial ischemia. J Mol Cell Cardiol. 1983 Oct;15(10):713–716. doi: 10.1016/0022-2828(83)90260-2. [DOI] [PubMed] [Google Scholar]
  20. Shikama K. Nature of the FeO2 bonding in myoglobin: an overview from physical to clinical biochemistry. Experientia. 1985 Jun 15;41(6):701–706. doi: 10.1007/BF02012563. [DOI] [PubMed] [Google Scholar]
  21. Starke P. E., Farber J. L. Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss reaction. J Biol Chem. 1985 Aug 25;260(18):10099–10104. [PubMed] [Google Scholar]
  22. Taylor D. J., Matthews P. M., Radda G. K. Myoglobin-dependent oxidative metabolism in the hypoxic rat heart. Respir Physiol. 1986 Mar;63(3):275–283. doi: 10.1016/0034-5687(86)90095-2. [DOI] [PubMed] [Google Scholar]
  23. Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whitburn K. D., Hoffman M. Z. Interaction of radiation-generated radicals with myoglobin in aqueous solution. III. Effects of oxygen and catalase on the product distribution in solutions of ferrimyoglobin containing N2O. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Feb;47(2):167–179. doi: 10.1080/09553008514550241. [DOI] [PubMed] [Google Scholar]
  25. Whitburn K. D., Shieh J. J., Sellers R. M., Hoffman M. Z., Taub I. A. Redox transformations in ferrimyoglobin induced by radiation-generated free radicals in aqueous solution. J Biol Chem. 1982 Feb 25;257(4):1860–1869. [PubMed] [Google Scholar]
  26. Whitburn K. D. The interaction of oxymyoglobin with hydrogen peroxide: a kinetic anomaly at large excesses of hydrogen peroxide. Arch Biochem Biophys. 1988 Dec;267(2):614–622. doi: 10.1016/0003-9861(88)90069-0. [DOI] [PubMed] [Google Scholar]
  27. Whitburn K. D. The interaction of oxymyoglobin with hydrogen peroxide: the formation of ferrylmyoglobin at moderate excesses of hydrogen peroxide. Arch Biochem Biophys. 1987 Mar;253(2):419–430. doi: 10.1016/0003-9861(87)90195-0. [DOI] [PubMed] [Google Scholar]
  28. Wittenberg B. A., Wittenberg J. B. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7503–7507. doi: 10.1073/pnas.84.21.7503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wittenberg J. B., Wittenberg B. A. Preparation of myoglobins. Methods Enzymol. 1981;76:29–42. doi: 10.1016/0076-6879(81)76112-3. [DOI] [PubMed] [Google Scholar]
  30. Yusa K., Shikama K. Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: involvement of ferryl intermediate. Biochemistry. 1987 Oct 20;26(21):6684–6688. doi: 10.1021/bi00395a018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES