Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Nov 1;263(3):785–793. doi: 10.1042/bj2630785

Co-ordinated changes in the cyclic AMP signalling system and the phosphorylation of two nuclear proteins of Mr 130,000 and 110,000 during proliferative stimulation of the rat parotid gland by isoprenaline. Possible identity of the two proteins with pp135 and nucleolin.

J Hoffmann 1, G Schwoch 1
PMCID: PMC1133500  PMID: 2557010

Abstract

Parotid glands were stimulated to growth by repeated injection of the beta-agonist isoprenaline into rats. Incubation of intact parotid-gland lobules with [32P]Pi and subsequent analysis of nuclear proteins revealed in the stimulated glands an increased 32P incorporation into two acid-soluble non-histone proteins with apparent Mr values of 110,000 and 130,000 (p110 and p130). After a single injection of isoprenaline, leading to a biphasic increase in DNA synthesis (maximum at 24 h), the same two proteins showed a transiently increased 32P incorporation at 17 h after injection. At this time point at the onset of DNA synthesis the total activity of soluble cyclic AMP-dependent protein kinase decreased. No change in p110/p130 phosphorylation was observed at 0.3 h after stimulation, a time of maximal stimulation of secretion. Administration of the beta-antagonist propranolol 8 h after the injection of isoprenaline suppressed the increase in DNA synthesis, the preceding changes in the concentration of cyclic AMP and in the activity of cyclic AMP-dependent protein kinase, as well as the increased phosphorylation of p110 and p130. Cross-reactivity of p110 and p130 with specific antisera against two nucleolar phosphoproteins of similar molecular mass (nucleolin and pp135), as well as their localization in a nucleolar cell fraction, indicated a possible identity of p110 and p130 with these two proteins. Our results suggest that nucleolin and pp135 are nuclear target proteins of cyclic AMP in the cyclic AMP-influenced regulation of the transition of cells from the G1 to the S phase.

Full text

PDF
785

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn Y. S., Choi Y. C., Goldknopf I. L., Busch H. Isolation and characterization of a 125-kilodalton rapidly labeled nucleolar phosphoprotein. Biochemistry. 1985 Dec 3;24(25):7296–7302. doi: 10.1021/bi00346a041. [DOI] [PubMed] [Google Scholar]
  2. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. II. Mechanism of action with the holoenzyme. J Biol Chem. 1973 Feb 25;248(4):1255–1261. [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barka T. Further studies on the effects of isoproterenol on RNA synthesis of salivary glands. Exp Cell Res. 1970 Sep;62(1):50–60. doi: 10.1016/0014-4827(79)90508-1. [DOI] [PubMed] [Google Scholar]
  5. Baserga R. Induction of DNA synthesis by a purified chemical compound. Fed Proc. 1970 Jul-Aug;29(4):1443–1446. [PubMed] [Google Scholar]
  6. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  7. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  8. Bouche G., Caizergues-Ferrer M., Bugler B., Amalric F. Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res. 1984 Apr 11;12(7):3025–3035. doi: 10.1093/nar/12.7.3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bourbon H. M., Bugler B., Caizergues-Ferrer M., Amalric F., Zalta J. P. Maturation of a 100 kDa protein associated with preribosomes in Chinese hamster ovary cells. Mol Biol Rep. 1983 May;9(1-2):39–47. doi: 10.1007/BF00777472. [DOI] [PubMed] [Google Scholar]
  10. Bourbon H., Bugler B., Caizergues-Ferrer M., Amalric F. Role of phosphorylation on the maturation pathways of a 100 kDa nucleolar protein. FEBS Lett. 1983 May 8;155(2):218–222. doi: 10.1016/0014-5793(82)80606-6. [DOI] [PubMed] [Google Scholar]
  11. Bugler B., Caizergues-Ferrer M., Bouche G., Bourbon H., Amalric F. Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem. 1982 Nov 15;128(2-3):475–480. doi: 10.1111/j.1432-1033.1982.tb06989.x. [DOI] [PubMed] [Google Scholar]
  12. Butcher F. R., Putney J. W., Jr Regulation of parotid gland function by cyclic nucleotides and calcium. Adv Cyclic Nucleotide Res. 1980;13:215–249. [PubMed] [Google Scholar]
  13. Byus C. V., Hedge G. A., Russell D. H. The involvement of cyclic AMP-dependent protein kinase(s) in the induction of ornithine decarboxylase in the regenerating rat liver and in the adrenal gland after unilateral adrenalectomy. Biochim Biophys Acta. 1977 Jun 23;498(1):39–45. doi: 10.1016/0304-4165(77)90085-x. [DOI] [PubMed] [Google Scholar]
  14. Caizergues-Ferrer M., Belenguer P., Lapeyre B., Amalric F., Wallace M. O., Olson M. O. Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry. 1987 Dec 1;26(24):7876–7883. doi: 10.1021/bi00398a051. [DOI] [PubMed] [Google Scholar]
  15. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  16. Egyhazi E., Pigon A., Chang J. H., Ghaffari S. H., Dreesen T. D., Wellman S. E., Case S. T., Olson M. O. Effects of anti-C23 (nucleolin) antibody on transcription of ribosomal DNA in Chironomus salivary gland cells. Exp Cell Res. 1988 Oct;178(2):264–272. doi: 10.1016/0014-4827(88)90397-7. [DOI] [PubMed] [Google Scholar]
  17. Erard M. S., Belenguer P., Caizergues-Ferrer M., Pantaloni A., Amalric F. A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem. 1988 Aug 15;175(3):525–530. doi: 10.1111/j.1432-1033.1988.tb14224.x. [DOI] [PubMed] [Google Scholar]
  18. Escande M. L., Gas N., Stevens B. J. Immunolocalization of the 100 K nucleolar protein in CHO cells. Biol Cell. 1985;53(2):99–109. doi: 10.1111/j.1768-322x.1985.tb00359.x. [DOI] [PubMed] [Google Scholar]
  19. Geahlen R. L., Harrison M. L. Induction of a substrate for casein kinase II during lymphocyte mitogenesis. Biochim Biophys Acta. 1984 Jun 19;804(2):169–175. doi: 10.1016/0167-4889(84)90146-0. [DOI] [PubMed] [Google Scholar]
  20. Gergely P., Bot G. The control of phosphorylase phosphatase by cAMP-dependent protein kinase. FEBS Lett. 1977 Oct 15;82(2):269–272. doi: 10.1016/0014-5793(77)80600-5. [DOI] [PubMed] [Google Scholar]
  21. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Herrera A. H., Olson M. O. Association of protein C23 with rapidly labeled nucleolar RNA. Biochemistry. 1986 Oct 7;25(20):6258–6264. doi: 10.1021/bi00368a063. [DOI] [PubMed] [Google Scholar]
  23. Ingebritsen T. S., Cohen P. Protein phosphatases: properties and role in cellular regulation. Science. 1983 Jul 22;221(4608):331–338. doi: 10.1126/science.6306765. [DOI] [PubMed] [Google Scholar]
  24. Jahn R., Unger C., Söling H. D. Specific protein phosphorylation during stimulation of amylase secretion by beta-agonists or dibutyryl adenosine 3',5'-monophosphate in the rat parotid gland. Eur J Biochem. 1980 Nov;112(2):345–352. doi: 10.1111/j.1432-1033.1980.tb07211.x. [DOI] [PubMed] [Google Scholar]
  25. Joachim S., Schwoch G. Immunoelectron microscopic localization of catalytic and regulatory subunits of cAMP-dependent protein kinases in the parotid gland. Eur J Cell Biol. 1988 Aug;46(3):491–498. [PubMed] [Google Scholar]
  26. Jordan G. At the heart of the nucleolus. Nature. 1987 Oct 8;329(6139):489–490. doi: 10.1038/329489a0. [DOI] [PubMed] [Google Scholar]
  27. Khatra B. S., Printz R., Cobb C. E., Corbin J. D. Regulatory subunit of cAMP-dependent protein kinase inhibits phosphoprotein phosphatase. Biochem Biophys Res Commun. 1985 Jul 31;130(2):567–573. doi: 10.1016/0006-291x(85)90454-1. [DOI] [PubMed] [Google Scholar]
  28. Kronberg H., Zimmer H. G., Neuhoff V. A "high-performance" 2D gel scanner. Clin Chem. 1984 Dec;30(12 Pt 1):2059–2062. [PubMed] [Google Scholar]
  29. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  30. Lapeyre B., Bourbon H., Amalric F. Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1472–1476. doi: 10.1073/pnas.84.6.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. MacManus J. P., Braceland B. M., Youdale T., Whitfield J. F. Adrenergic antagonists, and a possible link between the increase in cyclic adenosine 3',5'-monophosphate and DNA synthesis during liver regeneration. J Cell Physiol. 1973 Oct;82(2):157–164. doi: 10.1002/jcp.1040820204. [DOI] [PubMed] [Google Scholar]
  32. Nimmo H. G., Cohen P. Hormonal control of protein phosphorylation. Adv Cyclic Nucleotide Res. 1977;8:145–266. [PubMed] [Google Scholar]
  33. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  34. Olson M. O., Guetzow K., Busch H. Localization of phosphoprotein C23 in nucleoli by immunological methods. Exp Cell Res. 1981 Oct;135(2):259–265. doi: 10.1016/0014-4827(81)90161-0. [DOI] [PubMed] [Google Scholar]
  35. Olson M. O., Hatchett S., Allan R., Hawkins R. C., Busch H. Nucleolus-associated phosphoprotein kinases of normal and regenerating liver and Novikoff hepatoma ascites cells. Cancer Res. 1978 Oct;38(10):3421–3426. [PubMed] [Google Scholar]
  36. Olson M. O., Orrick L. R., Jones C., Busch H. Phosphorylation of acid-soluble nucleolar proteins of Novikoff hepatoma ascites cells in vivo. J Biol Chem. 1974 May 10;249(9):2823–2827. [PubMed] [Google Scholar]
  37. Pfaff M., Anderer F. A. Casein kinase II accumulation in the nucleolus and its role in nucleolar phosphorylation. Biochim Biophys Acta. 1988 Apr 2;969(1):100–109. doi: 10.1016/0167-4889(88)90093-6. [DOI] [PubMed] [Google Scholar]
  38. Pfeifle J., Anderer F. A. Isolation and localization of phosphoprotein pp 135 in the nucleoli of various cell lines. Eur J Biochem. 1984 Mar 1;139(2):417–424. doi: 10.1111/j.1432-1033.1984.tb08021.x. [DOI] [PubMed] [Google Scholar]
  39. Pfeifle J., Boller K., Anderer F. A. Phosphoprotein pp135 is an essential component of the nucleolus organizer region (NOR). Exp Cell Res. 1986 Jan;162(1):11–22. doi: 10.1016/0014-4827(86)90422-2. [DOI] [PubMed] [Google Scholar]
  40. Rao S. V., Mamrack M. D., Olson M. O. Localization of phosphorylated highly acidic regions in the NH2-terminal half of nucleolar protein C23. J Biol Chem. 1982 Dec 25;257(24):15035–15041. [PubMed] [Google Scholar]
  41. Rose K. M., Stetler D. A., Jacob S. T. Phosphorylation of RNA polymerases: specific association of protein kinase NII with RNA polymerase I. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):135–142. doi: 10.1098/rstb.1983.0046. [DOI] [PubMed] [Google Scholar]
  42. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  43. Rothblum L. I., Mamrack P. M., Kunkle H. M., Olson M. O., Busch H. Fractionation of nucleoli. Enzymatic and two-dimensional polyacrylamide gel electrophoretic analysis. Biochemistry. 1977 Oct 18;16(21):4716–4721. doi: 10.1021/bi00640a028. [DOI] [PubMed] [Google Scholar]
  44. SELYE H., VEILLEUX R., CANTIN M. Excessive stimulation of salivary gland growth by isoproterenol. Science. 1961 Jan 6;133(3445):44–45. doi: 10.1126/science.133.3445.44. [DOI] [PubMed] [Google Scholar]
  45. Schneider H. R., Issinger O. G. Nucleolin (C23), a physiological substrate for casein kinase II. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1390–1397. doi: 10.1016/s0006-291x(88)80786-1. [DOI] [PubMed] [Google Scholar]
  46. Schneider H. R., Reichert G. H., Issinger O. G. Enhanced casein kinase II activity during mouse embryogenesis. Identification of a 110-kDa phosphoprotein as the major phosphorylation product in mouse embryos and Krebs II mouse ascites tumor cells. Eur J Biochem. 1986 Dec 15;161(3):733–738. doi: 10.1111/j.1432-1033.1986.tb10501.x. [DOI] [PubMed] [Google Scholar]
  47. Schwoch G., Freimann A. Quantitative changes in the catalytic and regulatory subunits of nuclear cAMP-dependent protein kinases type I and type II during isoproterenol-induced growth of the rat parotid gland. FEBS Lett. 1986 Mar 3;197(1-2):143–148. doi: 10.1016/0014-5793(86)80315-5. [DOI] [PubMed] [Google Scholar]
  48. Schwoch G. Selective regulation of the amount of catalytic subunit of cyclic AMP-dependent protein kinases during isoprenaline-induced growth of the rat parotid gland. Biochem J. 1987 Nov 15;248(1):243–250. doi: 10.1042/bj2480243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Srivastava A. K., Khandelwal R. L., Chiasson J. L., Haman A. Inhibitory effect of the regulatory subunit of type I cAMP-dependent protein kinase on phosphoprotein phosphatase. Biochem Int. 1988 Feb;16(2):303–310. [PubMed] [Google Scholar]
  50. Söling H. D., Padel U., Jahn R., Thiel G., Kricke P., Fest W. Regulation of protein kinases in exocrine secretory cells during agonist-induced exocytosis. Adv Enzyme Regul. 1985;23:141–156. doi: 10.1016/0065-2571(85)90044-5. [DOI] [PubMed] [Google Scholar]
  51. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  52. Tata J. R. Isolation of nuclei from liver and other tissues. Methods Enzymol. 1974;31:253–262. doi: 10.1016/0076-6879(74)31027-0. [DOI] [PubMed] [Google Scholar]
  53. Tsang B. K., Rixon R. H., Whitfield J. F. A possible role for cyclic AMP in the initiation of DNA synthesis by isoproterenol-activated parotid gland cells. J Cell Physiol. 1980 Jan;102(1):19–26. doi: 10.1002/jcp.1041020104. [DOI] [PubMed] [Google Scholar]
  54. Wang T., Sheppard J. R., Foker J. E. Rise and fall of cyclic AMP required for onset of lymphocyte DNA synthesis. Science. 1978 Jul 14;201(4351):155–157. doi: 10.1126/science.208147. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES