Abstract
Since the studies on tyrosine phosphorylation of calmodulin by the insulin receptor kinase in vitro suggested that protamine and poly(L-lysine) may activate phosphorylation of the receptor beta subunit [Sacks & McDonald (1988) J. Biol. Chem. 263, 2377-2383], we examined the effects of a variety of basic polycations/proteins and polyamines on insulin receptor kinase activity. The insulin receptor purified from human placental membranes was incubated with each basic polycation/protein or polyamine and assayed for tyrosine-specific protein kinase activity by measuring 32P incorporation into the src-related peptide. At a concentration of 1 microM, poly(L-lysine) and poly(L-ornithine) markedly stimulated kinase activity, whereas poly(L-arginine) and histones H1 and H2B inhibited insulin receptor kinase. In contrast, at a concentration of 1 mM, three polyamines (spermine, spermidine and putrescine) did not alter kinase activity. Poly(L-lysine) and poly(L-ornithine) stimulated the insulin receptor kinase by 5-10-fold at concentrations of 0.1-1 microM. Protamine sulphate also showed a significant stimulatory effect at a concentration of 100 microM. Preincubation of the receptor with poly(L-lysine) or poly(L-ornithine) for 20-60 min resulted in maximal kinase activation. Poly(L-lysine), the most effective activator of the receptor kinase, was used to characterize further the mechanisms of the kinase activation. Poly(L-lysine) activates the insulin receptor kinase by increasing the Vmax. without changing the Km. Poly(L-lysine) markedly stimulates the kinase activity of insulin receptor preparations that have lost both basal kinase activity and the ability to be stimulated by insulin. Insulin and poly(L-lysine) also differed in their ability to stimulate the kinase activity of prephosphorylated receptors. Prephosphorylation of the receptors did not affect the stimulation of the kinase by insulin. In contrast, prephosphorylation of receptors resulted in a markedly enhanced ability of poly(L-lysine) to stimulate kinase activity. These studies suggest that the mechanisms by which poly(L-lysine) and insulin activate the kinase are different. In conjunction with other additional evidence, it is suggested that poly(L-lysine) interacts directly with the beta-subunit of the receptor, thereby activating the receptor kinase.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
- Bazzi M. D., Nelsestuen G. L. Role of substrate in imparting calcium and phospholipid requirements to protein kinase C activation. Biochemistry. 1987 Apr 7;26(7):1974–1982. doi: 10.1021/bi00381a029. [DOI] [PubMed] [Google Scholar]
- Brunati A. M., Marchiori F., Pinna L. A. Isolation and partial characterization of distinct forms of tyrosine protein kinases from rat spleen. FEBS Lett. 1985 Sep 2;188(2):321–325. doi: 10.1016/0014-5793(85)80395-1. [DOI] [PubMed] [Google Scholar]
- Casnellie J. E., Harrison M. L., Pike L. J., Hellström K. E., Krebs E. G. Phosphorylation of synthetic peptides by a tyrosine protein kinase from the particulate fraction of a lymphoma cell line. Proc Natl Acad Sci U S A. 1982 Jan;79(2):282–286. doi: 10.1073/pnas.79.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colca J. R., DeWald D. B., Pearson J. D., Palazuk B. J., Laurino J. P., McDonald J. M. Insulin stimulates the phosphorylation of calmodulin in intact adipocytes. J Biol Chem. 1987 Aug 25;262(24):11399–11402. [PubMed] [Google Scholar]
- Davis R. J., Czech M. P. Amiloride directly inhibits growth factor receptor tyrosine kinase activity. J Biol Chem. 1985 Feb 25;260(4):2543–2551. [PubMed] [Google Scholar]
- Denton R. M. Early events in insulin actions. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:293–341. [PubMed] [Google Scholar]
- Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
- Ellis L., Morgan D. O., Clauser E., Roth R. A., Rutter W. J. A membrane-anchored cytoplasmic domain of the human insulin receptor mediates a constitutively elevated insulin-independent uptake of 2-deoxyglucose. Mol Endocrinol. 1987 Jan;1(1):15–24. doi: 10.1210/mend-1-1-15. [DOI] [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y. Characterization of purified insulin receptor subunits. J Biol Chem. 1984 Jan 25;259(2):1206–1211. [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Choi S., Sakamoto Y., Itakura K. Purification of insulin receptor with full binding activity. J Biol Chem. 1983 Apr 25;258(8):5045–5049. [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Harmon J. T., Kathuria S. Radiation inactivation experiments predict that a large aggregate form of the insulin receptor is a highly active tyrosine-specific protein kinase. Biochemistry. 1989 May 30;28(11):4556–4563. doi: 10.1021/bi00437a008. [DOI] [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Kathuria S. Characterization of receptor tyrosine-specific protein kinases by the use of inhibitors. Staurosporine is a 100-times more potent inhibitor of insulin receptor than IGF-I receptor. Biochem Biophys Res Commun. 1988 Dec 30;157(3):955–962. doi: 10.1016/s0006-291x(88)80967-7. [DOI] [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Kathuria S. The monomeric alpha beta form of the insulin receptor exhibits much higher insulin-dependent tyrosine-specific protein kinase activity than the intact alpha 2 beta 2 form of the receptor. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6095–6099. doi: 10.1073/pnas.82.18.6095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gammeltoft S., Van Obberghen E. Protein kinase activity of the insulin receptor. Biochem J. 1986 Apr 1;235(1):1–11. doi: 10.1042/bj2350001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatica M., Allende C. C., Antonelli M., Allende J. E. Polylysine-containing peptides, including the carboxyl-terminal segment of the human c-Ki-ras 2 protein, affect the activity of some key membrane enzymes. Proc Natl Acad Sci U S A. 1987 Jan;84(2):324–328. doi: 10.1073/pnas.84.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graves C. B., Gale R. D., Laurino J. P., McDonald J. M. The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. J Biol Chem. 1986 Aug 5;261(22):10429–10438. [PubMed] [Google Scholar]
- Ham R. G., McKeehan W. L. Media and growth requirements. Methods Enzymol. 1979;58:44–93. doi: 10.1016/s0076-6879(79)58126-9. [DOI] [PubMed] [Google Scholar]
- Heffetz D., Zick Y. Receptor aggregation is necessary for activation of the soluble insulin receptor kinase. J Biol Chem. 1986 Jan 15;261(2):889–894. [PubMed] [Google Scholar]
- Kadowaki T., Fujita-Yamaguchi Y., Nishida E., Takaku F., Akiyama T., Kathuria S., Akanuma Y., Kasuga M. Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinase. J Biol Chem. 1985 Apr 10;260(7):4016–4020. [PubMed] [Google Scholar]
- Kadowaki T., Nishida E., Kasuga M., Akiyama T., Takaku F., Ishikawa M., Sakai H., Kathuria S., Fujita-Yamaguchi Y. Phosphorylation of fodrin (nonerythroid spectrin) by the purified insulin receptor kinase. Biochem Biophys Res Commun. 1985 Mar 15;127(2):493–500. doi: 10.1016/s0006-291x(85)80187-x. [DOI] [PubMed] [Google Scholar]
- Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., Kahn C. R. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2137–2141. doi: 10.1073/pnas.80.8.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., White M. F., Kahn C. R. Characterization of the insulin receptor kinase purified from human placental membranes. J Biol Chem. 1983 Sep 25;258(18):10973–10980. [PubMed] [Google Scholar]
- Kathuria S., Hartman S., Grunfeld C., Ramachandran J., Fujita-Yamaguchi Y. Differential sensitivity of two functions of the insulin receptor to the associated proteolysis: kinase action and hormone binding. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8570–8574. doi: 10.1073/pnas.83.22.8570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lemaitre M., Bayard B., Lebleu B. Specific antiviral activity of a poly(L-lysine)-conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci U S A. 1987 Feb;84(3):648–652. doi: 10.1073/pnas.84.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manabe Y., Longley C., Furmanski P. High-level conjugation of chelating agents onto immunoglobulins: use of an intermediary poly(L-lysine)-diethylenetriaminepentaacetic acid carrier. Biochim Biophys Acta. 1986 Oct 1;883(3):460–467. doi: 10.1016/0304-4165(86)90285-0. [DOI] [PubMed] [Google Scholar]
- Pelech S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Modulation of protein phosphatases-1 and 2A by histone H1, protamine, polylysine and heparin. Eur J Biochem. 1985 Apr 15;148(2):245–251. doi: 10.1111/j.1432-1033.1985.tb08832.x. [DOI] [PubMed] [Google Scholar]
- Rosen O. M., Lebwohl D. E. Polylysine activates and alters the divalent cation requirements of the insulin receptor protein tyrosine kinase. FEBS Lett. 1988 Apr 25;231(2):397–401. doi: 10.1016/0014-5793(88)80858-5. [DOI] [PubMed] [Google Scholar]
- Sacks D. B., Fujita-Yamaguchi Y., Gale R. D., McDonald J. M. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta. Biochem J. 1989 Nov 1;263(3):803–812. doi: 10.1042/bj2630803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacks D. B., McDonald J. M. Calmodulin as substrate for insulin-receptor kinase. Phosphorylation by receptors from rat skeletal muscle. Diabetes. 1989 Jan;38(1):84–90. doi: 10.2337/diab.38.1.84. [DOI] [PubMed] [Google Scholar]
- Sacks D. B., McDonald J. M. Insulin-stimulated phosphorylation of calmodulin by rat liver insulin receptor preparations. J Biol Chem. 1988 Feb 15;263(5):2377–2383. [PubMed] [Google Scholar]
- Sahal D., Ramachandran J., Fujita-Yamaguchi Y. Specificity of tyrosine protein kinases of the structurally related receptors for insulin and insulin-like growth factor I: Tyr-containing synthetic polymers as specific inhibitors or substrates. Arch Biochem Biophys. 1988 Jan;260(1):416–426. doi: 10.1016/0003-9861(88)90465-1. [DOI] [PubMed] [Google Scholar]
- Shoelson S. E., White M. F., Kahn C. R. Tryptic activation of the insulin receptor. Proteolytic truncation of the alpha-subunit releases the beta-subunit from inhibitory control. J Biol Chem. 1988 Apr 5;263(10):4852–4860. [PubMed] [Google Scholar]
- Sweet L. J., Wilden P. A., Pessin J. E. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native alpha 2 beta 2 insulin receptor subunit complex. Biochemistry. 1986 Nov 4;25(22):7068–7074. doi: 10.1021/bi00370a047. [DOI] [PubMed] [Google Scholar]
- Tamura S., Brown T. A., Whipple J. H., Fujita-Yamaguchi Y., Dubler R. E., Cheng K., Larner J. A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem. 1984 May 25;259(10):6650–6658. [PubMed] [Google Scholar]
- Tornqvist H. E., Avruch J. Relationship of site-specific beta subunit tyrosine autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein kinase activity. J Biol Chem. 1988 Apr 5;263(10):4593–4601. [PubMed] [Google Scholar]
- Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
- Yanagita Y., Abdel-Ghany M., Raden D., Nelson N., Racker E. Polypeptide-dependent protein kinase from bakers' yeast. Proc Natl Acad Sci U S A. 1987 Feb;84(4):925–929. doi: 10.1073/pnas.84.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]



