Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001

Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects.

B P Morgan 1
PMCID: PMC1133540  PMID: 2690818

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. A., Scott W. A., Cohn Z. A. Evidence for sequential signals in the induction of the arachidonic acid cascade in macrophages. J Exp Med. 1986 Jan 1;163(1):139–154. doi: 10.1084/jem.163.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler S., Baker P. J., Johnson R. J., Ochi R. F., Pritzl P., Couser W. G. Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest. 1986 Mar;77(3):762–767. doi: 10.1172/JCI112372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BORSOS T., DOURMASHKIN R. R., HUMPHREY J. H. LESIONS IN ERYTHROCYTE MEMBRANES CAUSED BY IMMUNE HAEMOLYSIS. Nature. 1964 Apr 18;202:251–252. doi: 10.1038/202251a0. [DOI] [PubMed] [Google Scholar]
  4. Betz M., Seitz M., Hänsch G. M. Thromboxane B2 synthesis in human platelets induced by the late complement components C5b-9. Int Arch Allergy Appl Immunol. 1987;82(3-4):313–316. doi: 10.1159/000234215. [DOI] [PubMed] [Google Scholar]
  5. Bhakdi S., Tranum-Jensen J. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol. 1986 Apr 15;136(8):2999–3005. [PubMed] [Google Scholar]
  6. Biesecker G. Membrane attack complex of complement as a pathologic mediator. Lab Invest. 1983 Sep;49(3):237–249. [PubMed] [Google Scholar]
  7. Billingham M. E. Cytokines as inflammatory mediators. Br Med Bull. 1987 Apr;43(2):350–370. doi: 10.1093/oxfordjournals.bmb.a072187. [DOI] [PubMed] [Google Scholar]
  8. Blaas P., Berger B., Weber S., Peter H. H., Hänsch G. M. Paroxysmal nocturnal hemoglobinuria. Enhanced stimulation of platelets by the terminal complement components is related to the lack of C8bp in the membrane. J Immunol. 1988 May 1;140(9):3045–3051. [PubMed] [Google Scholar]
  9. Boyle M. D., Ohanian S. H., Borsos T. Lysis of tumor cells by antibody and complement. III. Lack of correlation between antigen movement and cell lysis. J Immunol. 1975 Aug;115(2):473–475. [PubMed] [Google Scholar]
  10. Boyle M. D., Ohanian S. H., Borsos T. Studies on the terminal stages of antibody-complement-mediated killing of a tumor cell. II. Inhibition of transformation of T to dead cells by 3'5' cAMP. J Immunol. 1976 May;116(5):1276–1279. [PubMed] [Google Scholar]
  11. Burakoff S. J., Martz E., Benacerraf B. Is the primary complement lesion insufficient for lysis? Failure of cells damaged under osmotic protection to lyse in EDTA or at low temperature after removal of osmotic protection. Clin Immunol Immunopathol. 1975 May;4(1):108–126. doi: 10.1016/0090-1229(75)90045-8. [DOI] [PubMed] [Google Scholar]
  12. Campbell A. K., Daw R. A., Hallett M. B., Luzio J. P. Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. Biochem J. 1981 Feb 15;194(2):551–560. doi: 10.1042/bj1940551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Campbell A. K., Daw R. A., Luzio J. P. Rapid increase in intracellular free Ca2+ induced by antibody plus complement. FEBS Lett. 1979 Nov 1;107(1):55–60. doi: 10.1016/0014-5793(79)80462-7. [DOI] [PubMed] [Google Scholar]
  14. Campbell A. K., Hallett M. B. Measurement of intracellular calcium ions and oxygen radicals in polymorphonuclear leucocyte-erythrocyte 'ghost' hybrids. J Physiol. 1983 May;338:537–550. doi: 10.1113/jphysiol.1983.sp014688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Campbell A. K., Luzio J. P. Intracellular free calcium as a pathogen in cell damage initiated by the immune system. Experientia. 1981 Oct 15;37(10):1110–1112. doi: 10.1007/BF02085041. [DOI] [PubMed] [Google Scholar]
  16. Campbell A. K., Morgan B. P. Monoclonal antibodies demonstrate protection of polymorphonuclear leukocytes against complement attack. Nature. 1985 Sep 12;317(6033):164–166. doi: 10.1038/317164a0. [DOI] [PubMed] [Google Scholar]
  17. Camussi G., Salvidio G., Biesecker G., Brentjens J., Andres G. Heymann antibodies induce complement-dependent injury of rat glomerular visceral epithelial cells. J Immunol. 1987 Nov 1;139(9):2906–2914. [PubMed] [Google Scholar]
  18. Carney D. F., Hammer C. H., Shin M. L. Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J Immunol. 1986 Jul 1;137(1):263–270. [PubMed] [Google Scholar]
  19. Carney D. F., Koski C. L., Shin M. L. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985 Mar;134(3):1804–1809. [PubMed] [Google Scholar]
  20. Casey P. J., Gilman A. G. G protein involvement in receptor-effector coupling. J Biol Chem. 1988 Feb 25;263(6):2577–2580. [PubMed] [Google Scholar]
  21. Cikes M. Antigenic expression of a murine lymphoma during growth in vitro. Nature. 1970 Feb 14;225(5233):645–647. doi: 10.1038/225645a0. [DOI] [PubMed] [Google Scholar]
  22. Cikes M., Friberg S., Jr Expression of H-2 and Moloney leukemia virus-determined cell-surface antigens in synchronized cultures of a mouse cell line. Proc Natl Acad Sci U S A. 1971 Mar;68(3):566–569. doi: 10.1073/pnas.68.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cooper N. R., Polley M. J., Oldstone M. B. Failure of terminal complement components to induce lysis of Moloney virus transformed lymphocytes. J Immunol. 1974 Feb;112(2):866–868. [PubMed] [Google Scholar]
  24. Cosyns J. P., Kazatchkine M. D., Bhakdi S., Mandet C., Grossetete J., Hinglais N., Bariety J. Immunohistochemical analysis of C3 cleavage fragments, factor H, and the C5b-9 terminal complex of complement in de novo membranous glomerulonephritis occurring in patients with renal transplant. Clin Nephrol. 1986 Oct;26(4):203–208. [PubMed] [Google Scholar]
  25. Curnutte J. T., Badwey J. A., Robinson J. M., Karnovsky M. J., Karnovsky M. L. Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate. J Biol Chem. 1984 Oct 10;259(19):11851–11857. [PubMed] [Google Scholar]
  26. Dahl M. V., Falk R. J., Carpenter R., Michael A. F. Deposition of the membrane attack complex of complement in bullous pemphigoid. J Invest Dermatol. 1984 Feb;82(2):132–135. doi: 10.1111/1523-1747.ep12259679. [DOI] [PubMed] [Google Scholar]
  27. Dahl M. V., Falk R. J., Carpenter R., Michael A. F. Membrane attack complex of complement in dermatitis herpetiformis. Arch Dermatol. 1985 Jan;121(1):70–72. [PubMed] [Google Scholar]
  28. Dankert J. R., Esser A. F. Proteolytic modification of human complement protein C9: loss of poly(C9) and circular lesion formation without impairment of function. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2128–2132. doi: 10.1073/pnas.82.7.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Davies P., Bailey P. J., Goldenberg M. M., Ford-Hutchinson A. W. The role of arachidonic acid oxygenation products in pain and inflammation. Annu Rev Immunol. 1984;2:335–357. doi: 10.1146/annurev.iy.02.040184.002003. [DOI] [PubMed] [Google Scholar]
  30. ELLEM K. A. Some aspects of the ascites tumor cell response to a heterologous antiserum. Cancer Res. 1958 Nov;18(10):1179–1185. [PubMed] [Google Scholar]
  31. Engel A. G., Arahata K. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann N Y Acad Sci. 1987;505:326–332. doi: 10.1111/j.1749-6632.1987.tb51301.x. [DOI] [PubMed] [Google Scholar]
  32. Esser A. F., Kolb W. P., Podack E. R., Müller-Eberhard H. J. Molecular reorganization of lipid bilayers by complement: a possible mechanism for membranolysis. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1410–1414. doi: 10.1073/pnas.76.3.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ferrone S., Cooper N. R., Pellegrino M. A., Reisfeld R. A. Interaction of histocompatibility (HL-A) antibodies and complement with synchronized human lymphoid cells in continuous culture. J Exp Med. 1973 Jan 1;137(1):55–68. doi: 10.1084/jem.137.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. GOLDBERG B., GREEN H. The cytotoxic action of immune gamma globulin and complement on Krebs ascites tumor cells. I. Ultrastructural studies. J Exp Med. 1959 May 1;109(5):505–510. doi: 10.1084/jem.109.5.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. GREEN H., BARROW P., GOLDBERG B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J Exp Med. 1959 Nov 1;110:699–713. doi: 10.1084/jem.110.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. GREEN H., GOLDBERG B. The action of antibody and complement on mammalian cells. Ann N Y Acad Sci. 1960 May 31;87:352–362. doi: 10.1111/j.1749-6632.1960.tb23205.x. [DOI] [PubMed] [Google Scholar]
  37. Hallett M. B., Luzio J. P., Campbell A. K. Stimulation of Ca2+-dependent chemiluminescence in rat polymorphonuclear leucocytes by polystyrene beads and the non-lytic action of complement. Immunology. 1981 Nov;44(3):569–576. [PMC free article] [PubMed] [Google Scholar]
  38. Hallett M. B., Newby A. C., Luzio J. P., Campbell A. K. Rapid stimulation of chemiluminescence in rat polymorphonuclear leucocytes caused by anti-cell antibody plus complement. Biochem Soc Trans. 1980 Dec;8(6):723–725. doi: 10.1042/bst0080723. [DOI] [PubMed] [Google Scholar]
  39. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hartung H. P., Bitter-Suermann D., Hadding U. Induction of thromboxane release from macrophages by anaphylatoxic peptide C3a of complement and synthetic hexapeptide C3a 72-77. J Immunol. 1983 Mar;130(3):1345–1349. [PubMed] [Google Scholar]
  41. Hinshaw D. B., Sklar L. A., Bohl B., Schraufstatter I. U., Hyslop P. A., Rossi M. W., Spragg R. G., Cochrane C. G. Cytoskeletal and morphologic impact of cellular oxidant injury. Am J Pathol. 1986 Jun;123(3):454–464. [PMC free article] [PubMed] [Google Scholar]
  42. Hoffman E. M. Inhibition of complement by a substance isolated from human erythrocytes. I. Extraction from human erythrocyte stromata. Immunochemistry. 1969 May;6(3):391–403. doi: 10.1016/0019-2791(69)90296-1. [DOI] [PubMed] [Google Scholar]
  43. Hoffmann E. M. Inhibition of complement by a substance isolated from human erythrocytes. II. Studies on the site and mechanism of action. Immunochemistry. 1969 May;6(3):405–419. doi: 10.1016/0019-2791(69)90297-3. [DOI] [PubMed] [Google Scholar]
  44. Hopkins S. J., Humphreys M., Jayson M. I. Cytokines in synovial fluid. I. The presence of biologically active and immunoreactive IL-1. Clin Exp Immunol. 1988 Jun;72(3):422–427. [PMC free article] [PubMed] [Google Scholar]
  45. Horigome I., Seino J., Sudo K., Kinoshita Y., Saito T., Yoshinaga K. Terminal complement complex in plasma from patients with systemic lupus erythematosus and other glomerular diseases. Clin Exp Immunol. 1987 Nov;70(2):417–424. [PMC free article] [PubMed] [Google Scholar]
  46. Hänsch G. M., Betz M., Günther J., Rother K. O., Sterzel B. The complement membrane attack complex stimulates the prostanoid production of cultured glomerular epithelial cells. Int Arch Allergy Appl Immunol. 1988;85(1):87–93. doi: 10.1159/000234479. [DOI] [PubMed] [Google Scholar]
  47. Hänsch G. M., Hammer C. H., Vanguri P., Shin M. L. Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5118–5121. doi: 10.1073/pnas.78.8.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hänsch G. M., Seitz M., Betz M. Effect of the late complement components C5b-9 on human monocytes: release of prostanoids, oxygen radicals and of a factor inducing cell proliferation. Int Arch Allergy Appl Immunol. 1987;82(3-4):317–320. doi: 10.1159/000234216. [DOI] [PubMed] [Google Scholar]
  49. Hänsch G. M., Seitz M., Martinotti G., Betz M., Rauterberg E. W., Gemsa D. Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol. 1984 Oct;133(4):2145–2150. [PubMed] [Google Scholar]
  50. Imagawa D. K., Barbour S. E., Morgan B. P., Wright T. M., Shin H. S., Ramm L. E. Role of complement C9 and calcium in the generation of arachidonic acid and its metabolites from rat polymorphonuclear leukocytes. Mol Immunol. 1987 Dec;24(12):1263–1271. doi: 10.1016/0161-5890(87)90120-9. [DOI] [PubMed] [Google Scholar]
  51. Imagawa D. K., Osifchin N. E., Paznekas W. A., Shin M. L., Mayer M. M. Consequences of cell membrane attack by complement: release of arachidonate and formation of inflammatory derivatives. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6647–6651. doi: 10.1073/pnas.80.21.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Irvine R. F. How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca2+? Biochem Soc Trans. 1989 Feb;17(1):6–9. doi: 10.1042/bst0170006. [DOI] [PubMed] [Google Scholar]
  53. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Jackson M. B., Stephens C. L., Lecar H. Single channel currents induced by complement in antibody-coated cell membranes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6421–6425. doi: 10.1073/pnas.78.10.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. KALFAYAN B., KIDD J. G. Structural changes produced in Brown-Pearce carcinoma cells by means of a specific antibody and complement. J Exp Med. 1953 Jan;97(1):145–162. doi: 10.1084/jem.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kaliner M., Austen K. F. Adenosine 3'5'-monophosphate: inhibition of complement-mediated cell lysis. Science. 1974 Feb 15;183(4125):659–661. doi: 10.1126/science.183.4125.659. [DOI] [PubMed] [Google Scholar]
  57. Kim S. H., Carney D. F., Hammer C. H., Shin M. L. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol. 1987 Mar 1;138(5):1530–1536. [PubMed] [Google Scholar]
  58. Kissel J. T., Mendell J. R., Rammohan K. W. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med. 1986 Feb 6;314(6):329–334. doi: 10.1056/NEJM198602063140601. [DOI] [PubMed] [Google Scholar]
  59. Koski C. L., Ramm L. E., Hammer C. H., Mayer M. M., Shin M. L. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3816–3820. doi: 10.1073/pnas.80.12.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Koski C. L., Sanders M. E., Swoveland P. T., Lawley T. J., Shin M. L., Frank M. M., Joiner K. A. Activation of terminal components of complement in patients with Guillain-Barré syndrome and other demyelinating neuropathies. J Clin Invest. 1987 Nov;80(5):1492–1497. doi: 10.1172/JCI113231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lachmann P. J., Bowyer D. E., Nicol P., Dawson R. M., Munn E. A. Studies on the terminal stages of complement lysis. Immunology. 1973 Jan;24(1):135–145. [PMC free article] [PubMed] [Google Scholar]
  62. Lerner R. A., Oldstone M. B., Cooper N. R. Cell cycle-dependent immune lysis of Moloney virus-transformed lymphocytes: presence of viral antigen, accessibility to antibody, and complement activation. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2584–2588. doi: 10.1073/pnas.68.10.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Liang W., Cohen E. P. Complement sensitivity of somatic hybrids of a complement-resistant murine leukemia cell line. J Natl Cancer Inst. 1975 Aug;55(2):309–317. [PubMed] [Google Scholar]
  64. Linscott W. D. An antigen density effect on the hemolytic efficiency of complement. J Immunol. 1970 May;104(5):1307–1309. [PubMed] [Google Scholar]
  65. Lo T. N., Boyle M. D. Relationship between the intracellular cyclic adenosine 3':5'-monophosphate level of tumor cells and their sensitivity to killing by antibody and complement. Cancer Res. 1979 Aug;39(8):3156–3162. [PubMed] [Google Scholar]
  66. Lovett D. H., Haensch G. M., Goppelt M., Resch K., Gemsa D. Activation of glomerular mesangial cells by the terminal membrane attack complex of complement. J Immunol. 1987 Apr 15;138(8):2473–2480. [PubMed] [Google Scholar]
  67. MILLER D. G., HSU T. C. The action of cytotoxic antisera on the HeLa strain of human carcinoma. Cancer Res. 1956 May;16(4):306–312. [PubMed] [Google Scholar]
  68. MOLLER E., MOLLER G. Quantitative studies of the sensitivity of normal and neoplastic mouse cells to the cytotoxic action of isoantibodies. J Exp Med. 1962 Mar 1;115:527–553. doi: 10.1084/jem.115.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Martin D. E., Zalman L. S., Müller-Eberhard H. J. Induction of expression of cell-surface homologous restriction factor upon anti-CD3 stimulation of human peripheral lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(1):213–217. doi: 10.1073/pnas.85.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Mayer M. M. Mechanism of cytolysis by complement. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2954–2958. doi: 10.1073/pnas.69.10.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Meade C. J., Turner G. A., Bateman P. E. The role of polyphosphoinositides and their breakdown products in A23187-induced release of arachidonic acid from rabbit polymorphonuclear leucocytes. Biochem J. 1986 Sep 1;238(2):425–436. doi: 10.1042/bj2380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Mollnes T. E., Harboe M. Immunohistochemical detection of the membrane and fluid-phase terminal complement complexes C5b-9(m) and SC5b-9. Consequences for interpretation and terminology. Scand J Immunol. 1987 Oct;26(4):381–386. doi: 10.1111/j.1365-3083.1987.tb02270.x. [DOI] [PubMed] [Google Scholar]
  73. Mollnes T. E., Lea T., Mellbye O. J., Pahle J., Grand O., Harboe M. Complement activation in rheumatoid arthritis evaluated by C3dg and the terminal complement complex. Arthritis Rheum. 1986 Jun;29(6):715–721. doi: 10.1002/art.1780290603. [DOI] [PubMed] [Google Scholar]
  74. Mollnes T. E., Paus A. Complement activation in synovial fluid and tissue from patients with juvenile rheumatoid arthritis. Arthritis Rheum. 1986 Nov;29(11):1359–1364. doi: 10.1002/art.1780291108. [DOI] [PubMed] [Google Scholar]
  75. Mollnes T. E., Vandvik B., Lea T., Vartdal F. Intrathecal complement activation in neurological diseases evaluated by analysis of the terminal complement complex. J Neurol Sci. 1987 Mar;78(1):17–28. doi: 10.1016/0022-510x(87)90074-8. [DOI] [PubMed] [Google Scholar]
  76. Morgan B. P., Campbell A. K., Compston D. A. Terminal component of complement (C9) in cerebrospinal fluid of patients with multiple sclerosis. Lancet. 1984 Aug 4;2(8397):251–254. doi: 10.1016/s0140-6736(84)90298-8. [DOI] [PubMed] [Google Scholar]
  77. Morgan B. P., Campbell A. K. The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J. 1985 Oct 1;231(1):205–208. doi: 10.1042/bj2310205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Morgan B. P., Daniels R. H., Watts M. J., Williams B. D. In vivo and in vitro evidence of cell recovery from complement attack in rheumatoid synovium. Clin Exp Immunol. 1988 Sep;73(3):467–472. [PMC free article] [PubMed] [Google Scholar]
  79. Morgan B. P., Daniels R. H., Williams B. D. Measurement of terminal complement complexes in rheumatoid arthritis. Clin Exp Immunol. 1988 Sep;73(3):473–478. [PMC free article] [PubMed] [Google Scholar]
  80. Morgan B. P., Dankert J. R., Esser A. F. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987 Jan 1;138(1):246–253. [PubMed] [Google Scholar]
  81. Morgan B. P. Mechanisms of tissue damage by the membrane attack complex of complement. Complement Inflamm. 1989;6(2):104–111. doi: 10.1159/000463082. [DOI] [PubMed] [Google Scholar]
  82. Morgan B. P. Non-lethal complement-membrane attack on human neutrophils: transient cell swelling and metabolic depletion. Immunology. 1988 Jan;63(1):71–77. [PMC free article] [PubMed] [Google Scholar]
  83. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  84. Niculescu F., Rus H. G., Vlaicu R. Immunohistochemical localization of C5b-9, S-protein, C3d and apolipoprotein B in human arterial tissues with atherosclerosis. Atherosclerosis. 1987 May;65(1-2):1–11. doi: 10.1016/0021-9150(87)90002-5. [DOI] [PubMed] [Google Scholar]
  85. Ohanian S. H., Borsos T. Lysis of tumor cells by antibody and complement. II. Lack of correlation between amount of C4 and C3 fixed and cell lysis. J Immunol. 1975 Apr;114(4):1292–1295. [PubMed] [Google Scholar]
  86. Ohanian S. H., Schlager S. I., Borsos T. Molecular interactions of cells with antibody and complement: influence of metabolic and physical properties of the target on the outcome of humoral immune attack. Contemp Top Mol Immunol. 1978;7:153–180. doi: 10.1007/978-1-4757-0779-3_5. [DOI] [PubMed] [Google Scholar]
  87. Ohanian S. H., Schlager S. I. Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. Crit Rev Immunol. 1981 Jan;1(3):165–209. [PubMed] [Google Scholar]
  88. Ohanian S. H., Yamazaki M., Schlager S. I., Faibisch M. Cell growth-dependent variation in the sensitivity of human and mouse tumor cells to complement-mediated killing. Cancer Res. 1983 Feb;43(2):491–495. [PubMed] [Google Scholar]
  89. Pasternak C. A., Warmsley A. M., Thomas D. B. Structural alterations in the surface membrane during the cell cycle. J Cell Biol. 1971 Aug;50(2):562–564. doi: 10.1083/jcb.50.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Pellegrino M. A., Ferrone S., Cooper N. R., Dierich M. P., Reisfeld R. A. Variation in susceptibility of a human lymphoid cell line to immune lysis during the cell cycle. Lack of correlation with antigen density and complement binding. J Exp Med. 1974 Aug 1;140(2):578–590. doi: 10.1084/jem.140.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Pellegrino M. A., Ferrone S., Cooper N. R., Dierich M. P., Reisfeld R. A. Variation in susceptibility of a human lymphoid cell line to immune lysis during the cell cycle. Lack of correlation with antigen density and complement binding. J Exp Med. 1974 Aug 1;140(2):578–590. doi: 10.1084/jem.140.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Ramm L. E., Mayer M. M. Life-span and size of the trans-membrane channel formed by large doses of complement. J Immunol. 1980 May;124(5):2281–2287. [PubMed] [Google Scholar]
  93. Ramm L. E., Whitlow M. B., Koski C. L., Shin M. L., Mayer M. M. Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol. 1983 Sep;131(3):1411–1415. [PubMed] [Google Scholar]
  94. Ramm L. E., Whitlow M. B., Mayer M. M. Complement lysis of nucleated cells: effect of temperature and puromycin on the number of channels required for cytolysis. Mol Immunol. 1984 Nov;21(11):1015–1021. doi: 10.1016/0161-5890(84)90110-x. [DOI] [PubMed] [Google Scholar]
  95. Ramm L. E., Whitlow M. B., Mayer M. M. Size distribution and stability of the trans-membrane channels formed by complement complex C5b-9. Mol Immunol. 1983 Feb;20(2):155–160. doi: 10.1016/0161-5890(83)90126-8. [DOI] [PubMed] [Google Scholar]
  96. Rauterberg E. W., Lieberknecht H. M., Wingen A. M., Ritz E. Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int. 1987 Mar;31(3):820–829. doi: 10.1038/ki.1987.72. [DOI] [PubMed] [Google Scholar]
  97. Richardson P. J., Luzio J. P. Complement-mediated production of plasma-membrane vesicles from rat fat-cells. Biochem J. 1980 Mar 15;186(3):897–906. doi: 10.1042/bj1860897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Roberts P. A., Morgan B. P., Campbell A. K. 2-Chloroadenosine inhibits complement-induced reactive oxygen metabolite production and recovery of human polymorphonuclear leucocytes attacked by complement. Biochem Biophys Res Commun. 1985 Jan 31;126(2):692–697. doi: 10.1016/0006-291x(85)90240-2. [DOI] [PubMed] [Google Scholar]
  99. Rus H. G., Niculescu F., Nanulescu M., Cristea A., Florescu P. Immunohistochemical detection of the terminal C5b-9 complement complex in children with glomerular diseases. Clin Exp Immunol. 1986 Jul;65(1):66–72. [PMC free article] [PubMed] [Google Scholar]
  100. Sahashi K., Engel A. G., Lambert E. H., Howard F. M., Jr Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol. 1980 Mar;39(2):160–172. doi: 10.1097/00005072-198003000-00005. [DOI] [PubMed] [Google Scholar]
  101. Salmon J. A., Higgs G. A. Prostaglandins and leukotrienes as inflammatory mediators. Br Med Bull. 1987 Apr;43(2):285–296. doi: 10.1093/oxfordjournals.bmb.a072183. [DOI] [PubMed] [Google Scholar]
  102. Sanders M. E., Alexander E. L., Koski C. L., Frank M. M., Joiner K. A. Detection of activated terminal complement (C5b-9) in cerebrospinal fluid from patients with central nervous system involvement of primary Sjogren's syndrome or systemic lupus erythematosus. J Immunol. 1987 Apr 1;138(7):2095–2099. [PubMed] [Google Scholar]
  103. Sanders M. E., Kopicky J. A., Wigley F. M., Shin M. L., Frank M. M., Joiner K. A. Membrane attack complex of complement in rheumatoid synovial tissue demonstrated by immunofluorescent microscopy. J Rheumatol. 1986 Dec;13(6):1028–1034. [PubMed] [Google Scholar]
  104. Sanders M. E., Koski C. L., Robbins D., Shin M. L., Frank M. M., Joiner K. A. Activated terminal complement in cerebrospinal fluid in Guillain-Barré syndrome and multiple sclerosis. J Immunol. 1986 Jun 15;136(12):4456–4459. [PubMed] [Google Scholar]
  105. Schlager S. I. Ability of tumor cells to resist humoral vs. cell-mediated immune attack is controlled by different membrane physical properties. Biochem Biophys Res Commun. 1982 May 14;106(1):58–64. doi: 10.1016/0006-291x(82)92057-5. [DOI] [PubMed] [Google Scholar]
  106. Schlager S. I., Ohanian S. H., Borsos T. Correlation between the ability of tumor cells to incorporate specific fatty acids and their sensitivity to killing by a specific antibody plus guinea pig complement. J Natl Cancer Inst. 1978 Sep;61(3):931–934. [PubMed] [Google Scholar]
  107. Schlager S. I., Ohanian S. H., Borsos T. Correlation between the ability of tumor cells to resist humoral immune attack and their ability to synthesize lipid. J Immunol. 1978 Feb;120(2):463–471. [PubMed] [Google Scholar]
  108. Schlager S. I., Ohanian S. H., Borsos T. Stimulation of the synthesis and release of lipids in tumor cells under attack by antibody and C. J Immunol. 1978 Mar;120(3):895–901. [PubMed] [Google Scholar]
  109. Schlager S. I., Ohanian S. H. Correlation between lipid synthesis in tumor cells and their sensitivity to humoral immune attack. Science. 1977 Aug 19;197(4305):773–776. doi: 10.1126/science.196331. [DOI] [PubMed] [Google Scholar]
  110. Schlager S. I., Ohanian S. H. Modulation of tumor cell susceptibility to humoral immune killing through chemical and physical manipulation of cellular lipid and fatty acid composition. J Immunol. 1980 Sep;125(3):1196–1200. [PubMed] [Google Scholar]
  111. Schäfer H., Mathey D., Hugo F., Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol. 1986 Sep 15;137(6):1945–1949. [PubMed] [Google Scholar]
  112. Schönermark S., Filsinger S., Berger B., Hänsch G. M. The C8-binding protein of human erythrocytes: interaction with the components of the complement-attack phase. Immunology. 1988 Apr;63(4):585–590. [PMC free article] [PubMed] [Google Scholar]
  113. Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
  114. Scolding N. J., Houston W. A., Morgan B. P., Campbell A. K., Compston D. A. Reversible injury of cultured rat oligodendrocytes by complement. Immunology. 1989 Aug;67(4):441–446. [PMC free article] [PubMed] [Google Scholar]
  115. Scolding N. J., Morgan B. P., Houston W. A., Linington C., Campbell A. K., Compston D. A. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature. 1989 Jun 22;339(6226):620–622. doi: 10.1038/339620a0. [DOI] [PubMed] [Google Scholar]
  116. Seeger W., Suttorp N., Hellwig A., Bhakdi S. Noncytolytic terminal complement complexes may serve as calcium gates to elicit leukotriene B4 generation in human polymorphonuclear leukocytes. J Immunol. 1986 Aug 15;137(4):1286–1293. [PubMed] [Google Scholar]
  117. Segerling M., Ohanian S. H., Borsos T. Effect of metabolic inhibitors on killing of tumor cells by antibody and complement. J Natl Cancer Inst. 1974 Nov;53(5):1411–1413. doi: 10.1093/jnci/53.5.1411. [DOI] [PubMed] [Google Scholar]
  118. Segerling M., Ohanian S. H., Borsos T. Persistence of immunoglobulin and complement components C4 and C3 bound to guinea pig tumor cells. J Natl Cancer Inst. 1976 Jul;57(1):145–150. doi: 10.1093/jnci/57.1.145. [DOI] [PubMed] [Google Scholar]
  119. Shipley W. U. Immune cytolysis in relation to the growth cycle of Chinese hamster cells. Cancer Res. 1971 Jul;31(7):925–929. [PubMed] [Google Scholar]
  120. Shirazi Y., Imagawa D. K., Shin M. L. Release of leukotriene B4 from sublethally injured oligodendrocytes by terminal complement complexes. J Neurochem. 1987 Jan;48(1):271–278. doi: 10.1111/j.1471-4159.1987.tb13158.x. [DOI] [PubMed] [Google Scholar]
  121. Sims P. J. Complement pores in erythrocyte membranes. Analysis of C8/C9 binding required for functional membrane damage. Biochim Biophys Acta. 1983 Aug 10;732(3):541–552. doi: 10.1016/0005-2736(83)90230-4. [DOI] [PubMed] [Google Scholar]
  122. Sims P. J., Wiedmer T. Repolarization of the membrane potential of blood platelets after complement damage: evidence for a Ca++ -dependent exocytotic elimination of C5b-9 pores. Blood. 1986 Aug;68(2):556–561. [PubMed] [Google Scholar]
  123. Slater T. F. Free-radical mechanisms in tissue injury. Biochem J. 1984 Aug 15;222(1):1–15. doi: 10.1042/bj2220001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Stephens C. L., Henkart P. A. Electrical measurements of complement-mediated membrane damage in cultured nerve and muscle cells. J Immunol. 1979 Feb;122(2):455–458. [PubMed] [Google Scholar]
  125. Stewart J. L., Monahan J. B., Brickner A., Sodetz J. M. Measurement of the ratio of the eighth and ninth components of human complement on complement-lysed membranes. Biochemistry. 1984 Aug 28;23(18):4016–4022. doi: 10.1021/bi00313a002. [DOI] [PubMed] [Google Scholar]
  126. Stimler N. P., Bach M. K., Bloor C. M., Hugli T. E. Release of leukotrienes from guinea pig lung stimulated by C5ades Arg anaphylatoxin. J Immunol. 1982 May;128(5):2247–2252. [PubMed] [Google Scholar]
  127. Sugita Y., Nakano Y., Tomita M. Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem. 1988 Oct;104(4):633–637. doi: 10.1093/oxfordjournals.jbchem.a122524. [DOI] [PubMed] [Google Scholar]
  128. Tirosh R., Degani H., Berke G. Prelytic reduction of high-energy phosphates induced by antibody and complement in nucleated cells. 31P-NMR study. Complement. 1984;1(4):207–212. doi: 10.1159/000467839. [DOI] [PubMed] [Google Scholar]
  129. Wiedmer T., Esmon C. T., Sims P. J. On the mechanism by which complement proteins C5b-9 increase platelet prothrombinase activity. J Biol Chem. 1986 Nov 5;261(31):14587–14592. [PubMed] [Google Scholar]
  130. Yoo T. J., Chiu H. C., Spector A. A., Whiteaker R. S., Denning G. M., Lee N. F. Effect of fatty acid modifications of cultured hepatoma cells on susceptibility to complement-mediated cytolysis. Cancer Res. 1980 Apr;40(4):1084–1090. [PubMed] [Google Scholar]
  131. Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. de Heer E., Daha M. R., Bhakdi S., Bazin H., van Es L. A. Possible involvement of terminal complement complex in active Heymann nephritis. Kidney Int. 1985 Feb;27(2):388–393. doi: 10.1038/ki.1985.21. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES