Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Nov 15;264(1):107–113. doi: 10.1042/bj2640107

Zonation of fatty acid metabolism in rat liver.

M Guzmán 1, J Castro 1
PMCID: PMC1133553  PMID: 2574974

Abstract

Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.

Full text

PDF
107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Beynen A. C., Haagsman H. P., Van Golde L. M., Geelen M. J. The effects of insulin and glucagon on the release of triacylglycerols by isolated rat hepatocytes are mere reflections of the hormonal effects on the rate of triacylglycerol synthesis. Biochim Biophys Acta. 1981 Jul 24;665(1):1–7. doi: 10.1016/0005-2760(81)90224-1. [DOI] [PubMed] [Google Scholar]
  3. Bijleveld C., Geelen M. J. Measurement of acetyl-CoA carboxylase activity in isolated hepatocytes. Biochim Biophys Acta. 1987 Apr 24;918(3):274–283. doi: 10.1016/0005-2760(87)90231-1. [DOI] [PubMed] [Google Scholar]
  4. Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
  5. Chen K. S., Katz J. Zonation of glycogen and glucose syntheses, but not glycolysis, in rat liver. Biochem J. 1988 Oct 1;255(1):99–104. doi: 10.1042/bj2550099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook G. A., Gamble M. S. Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA. J Biol Chem. 1987 Feb 15;262(5):2050–2055. [PubMed] [Google Scholar]
  7. Evans J. L., Quistorff B., Witters L. A. Zonation of hepatic lipogenic enzymes identified by dual-digitonin-pulse perfusion. Biochem J. 1989 May 1;259(3):821–829. doi: 10.1042/bj2590821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geelen M. J., Harris R. A., Beynen A. C., McCune S. A. Short-term hormonal control of hepatic lipogenesis. Diabetes. 1980 Dec;29(12):1006–1022. doi: 10.2337/diab.29.12.1006. [DOI] [PubMed] [Google Scholar]
  9. Gibbons G. F., Pullinger C. R. Regulation of hepatic very-low-density lipoprotein secretion in rats fed on a diet high in unsaturated fat. Biochem J. 1987 Apr 15;243(2):487–492. doi: 10.1042/bj2430487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gumucio J. J. Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology. 1989 Jan;9(1):154–160. doi: 10.1002/hep.1840090124. [DOI] [PubMed] [Google Scholar]
  11. Guzmán M., Castro J., Maquedano A. Ethanol feeding to rats reversibly decreases hepatic carnitine palmitoyltransferase activity and increases enzyme sensitivity to malonyl-CoA. Biochem Biophys Res Commun. 1987 Dec 16;149(2):443–448. doi: 10.1016/0006-291x(87)90387-1. [DOI] [PubMed] [Google Scholar]
  12. Guzmán M., Geelen M. J. Effects of ethanol feeding on the activity and regulation of hepatic carnitine palmitoyltransferase I. Arch Biochem Biophys. 1988 Dec;267(2):580–588. doi: 10.1016/0003-9861(88)90065-3. [DOI] [PubMed] [Google Scholar]
  13. Guzmán M., Geelen M. J. Short-term inhibition of carnitine palmitoyltransferase I activity in rat hepatocytes incubated with ethanol. Biochem Biophys Res Commun. 1988 Jul 29;154(2):682–687. doi: 10.1016/0006-291x(88)90193-3. [DOI] [PubMed] [Google Scholar]
  14. Guzmán M., Geelen M. J. Short-term regulation of carnitine palmitoyltransferase activity in isolated rat hepatocytes. Biochem Biophys Res Commun. 1988 Mar 15;151(2):781–787. doi: 10.1016/s0006-291x(88)80349-8. [DOI] [PubMed] [Google Scholar]
  15. Holland R., Witters L. A., Hardie D. G. Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase. Eur J Biochem. 1984 Apr 16;140(2):325–333. doi: 10.1111/j.1432-1033.1984.tb08105.x. [DOI] [PubMed] [Google Scholar]
  16. Janski A. M., Cornell N. W. Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes. Biochem J. 1980 Feb 15;186(2):423–429. doi: 10.1042/bj1860423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jungermann K. Functional heterogeneity of periportal and perivenous hepatocytes. Enzyme. 1986;35(3):161–180. doi: 10.1159/000469338. [DOI] [PubMed] [Google Scholar]
  18. Jungermann K., Katz N. Functional hepatocellular heterogeneity. Hepatology. 1982 May-Jun;2(3):385–395. doi: 10.1002/hep.1840020316. [DOI] [PubMed] [Google Scholar]
  19. Jurin R. R., McCune S. A. Effect of cell density on metabolism in isolated rat hepatocytes. J Cell Physiol. 1985 Jun;123(3):442–448. doi: 10.1002/jcp.1041230322. [DOI] [PubMed] [Google Scholar]
  20. Katz N. R., Fischer W., Giffhorn S. Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat-liver tissue. Eur J Biochem. 1983 Sep 1;135(1):103–107. doi: 10.1111/j.1432-1033.1983.tb07623.x. [DOI] [PubMed] [Google Scholar]
  21. Katz N. R., Fischer W., Ick M. Heterogeneous distribution of ATP citrate lyase in rat-liver parenchyma. Microradiochemical determination in microdissected periportal and perivenous liver tissue. Eur J Biochem. 1983 Feb 1;130(2):297–301. doi: 10.1111/j.1432-1033.1983.tb07151.x. [DOI] [PubMed] [Google Scholar]
  22. Katz N., Thiele J., Giffhorn-Katz S. Zonal distribution of fatty acid synthase in liver parenchyma of male and female rats. Eur J Biochem. 1989 Mar 1;180(1):185–189. doi: 10.1111/j.1432-1033.1989.tb14631.x. [DOI] [PubMed] [Google Scholar]
  23. Keppens S., De Wulf H. Periportal and perivenous hepatocytes respond equally to glycogenolytic agonists. FEBS Lett. 1988 Jun 6;233(1):47–50. doi: 10.1016/0014-5793(88)81353-x. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  26. Quistorff B., Dich J., Grunnet N. Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1055–1061. doi: 10.1016/s0006-291x(86)80284-4. [DOI] [PubMed] [Google Scholar]
  27. Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  29. Saggerson D. Carnitine palmitoyltransferase in extrahepatic tissues. Biochem Soc Trans. 1986 Aug;14(4):679–681. doi: 10.1042/bst0140679. [DOI] [PubMed] [Google Scholar]
  30. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase in liver and five extrahepatic tissues in the rat. Inhibition by DL-2-bromopalmitoyl-CoA and effect of hypothyroidism. Biochem J. 1986 May 15;236(1):137–141. doi: 10.1042/bj2360137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stakkestad J. A., Bremer J. The outer carnitine palmitoyltransferase and regulation of fatty acid metabolism in rat liver in different thyroid states. Biochim Biophys Acta. 1983 Feb 7;750(2):244–252. doi: 10.1016/0005-2760(83)90025-5. [DOI] [PubMed] [Google Scholar]
  32. Stephens T. W., Harris R. A. Effect of starvation and diabetes on the sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate. Biochem J. 1987 Apr 15;243(2):405–412. doi: 10.1042/bj2430405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Terpstra A. H. Isolation of serum chylomicrons prior to density gradient ultracentrifugation of other serum lipoprotein classes. Anal Biochem. 1985 Oct;150(1):221–227. doi: 10.1016/0003-2697(85)90462-2. [DOI] [PubMed] [Google Scholar]
  34. Tijburg L. B., Maquedano A., Bijleveld C., Guzman M., Geelen M. J. Effects of ethanol feeding on hepatic lipid synthesis. Arch Biochem Biophys. 1988 Dec;267(2):568–579. doi: 10.1016/0003-9861(88)90064-1. [DOI] [PubMed] [Google Scholar]
  35. Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wakil S. J., Stoops J. K., Joshi V. C. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537–579. doi: 10.1146/annurev.bi.52.070183.002541. [DOI] [PubMed] [Google Scholar]
  37. Wals P. A., Palacin M., Katz J. The zonation of liver and the distribution of fructose 2,6-bisphosphate in rat liver. J Biol Chem. 1988 Apr 5;263(10):4876–4881. [PubMed] [Google Scholar]
  38. Zammit V. A. Carnitine acyltransferases in the physiological setting: the liver. Biochem Soc Trans. 1986 Aug;14(4):676–679. doi: 10.1042/bst0140676. [DOI] [PubMed] [Google Scholar]
  39. Zammit V. A. Mechanisms of regulation of the partition of fatty acids between oxidation and esterification in the liver. Prog Lipid Res. 1984;23(1):39–67. doi: 10.1016/0163-7827(84)90005-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES