Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 1;264(2):371–380. doi: 10.1042/bj2640371

Conformational analysis of PKI(5-22)amide, the active inhibitory fragment of the inhibitor protein of the cyclic AMP-dependent protein kinase.

J Reed 1, J S De Ropp 1, J Trewhella 1, D B Glass 1, W K Liddle 1, E M Bradbury 1, V Kinzel 1, D A Walsh 1
PMCID: PMC1133591  PMID: 2604724

Abstract

Fourier-transform i.r. spectroscopy, 1H-n.m.r. spectroscopy and X-ray scattering were used to study the conformation and shape of the peptide PKI(5-22)amide, which contains the active site of the inhibitor protein of the cyclic AMP-dependent protein kinase [Cheng, Van Pattern, Smith & Walsh (1985) Biochem. J. 231, 655-661]. The X-ray-scattering solution studies show that the peptide has a compact structure with Rg 0.9 nm (9.0 A) and a linear maximum dimension of 2.5 nm (25A). Compatible with this, Fourier-transform i.r. and n.m.r. determinations indicate that the peptide contains approx. 26% alpha-helix located in the N-terminal one-third of the molecule. This region contains the phenylalanine residue that is one essential recognition determinant for high-affinity binding to the protein kinase catalytic site.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. I. Interaction with the catalytic subunit of the protein kinase. J Biol Chem. 1972 Oct 25;247(20):6637–6642. [PubMed] [Google Scholar]
  2. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  3. Cheng H. C., Kemp B. E., Pearson R. B., Smith A. J., Misconi L., Van Patten S. M., Walsh D. A. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem. 1986 Jan 25;261(3):989–992. [PubMed] [Google Scholar]
  4. Cheng H. C., van Patten S. M., Smith A. J., Walsh D. A. An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase. Biochem J. 1985 Nov 1;231(3):655–661. doi: 10.1042/bj2310655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Prediction of beta-turns. Biophys J. 1979 Jun;26(3):367–383. doi: 10.1016/S0006-3495(79)85259-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Demaille J. G., Peters K. A., Fischer E. H. Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1977 Jul 12;16(14):3080–3086. doi: 10.1021/bi00633a006. [DOI] [PubMed] [Google Scholar]
  8. Gariépy J., Sykes B. D., Reid R. E., Hodges R. S. Proton nuclear magnetic resonance investigation of synthetic calcium-binding peptides. Biochemistry. 1982 Mar 30;21(7):1506–1512. doi: 10.1021/bi00536a007. [DOI] [PubMed] [Google Scholar]
  9. Gill G. N., Holdy K. E., Walton G. M., Kanstein C. B. Purification and characterization of 3':5'-cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3918–3922. doi: 10.1073/pnas.73.11.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glass D. B., Cheng H. C., Kemp B. E., Walsh D. A. Differential and common recognition of the catalytic sites of the cGMP-dependent and cAMP-dependent protein kinases by inhibitory peptides derived from the heat-stable inhibitor protein. J Biol Chem. 1986 Sep 15;261(26):12166–12171. [PubMed] [Google Scholar]
  11. Glass D. B., Cheng H. C., Mende-Mueller L., Reed J., Walsh D. A. Primary structural determinants essential for potent inhibition of cAMP-dependent protein kinase by inhibitory peptides corresponding to the active portion of the heat-stable inhibitor protein. J Biol Chem. 1989 May 25;264(15):8802–8810. [PubMed] [Google Scholar]
  12. Glass D. B., Lundquist L. J., Katz B. M., Walsh D. A. Protein kinase inhibitor-(6-22)-amide peptide analogs with standard and nonstandard amino acid substitutions for phenylalanine 10. Inhibition of cAMP-dependent protein kinase. J Biol Chem. 1989 Aug 25;264(24):14579–14584. [PubMed] [Google Scholar]
  13. Granot J., Mildvan A. S., Bramson H. N., Thomas N., Kaiser E. T. Nuclear magnetic resonance studies of the conformation and kinetics of the peptide-substrate at the active site of bovine heart protein kinase. Biochemistry. 1981 Feb 3;20(3):602–610. doi: 10.1021/bi00506a024. [DOI] [PubMed] [Google Scholar]
  14. Heidorn D. B., Trewhella J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry. 1988 Feb 9;27(3):909–915. doi: 10.1021/bi00403a011. [DOI] [PubMed] [Google Scholar]
  15. Levinson B. L., Pickover C. A., Richards F. M. Dimerization by colicin E3 in the absence of immunity protein. J Biol Chem. 1983 Sep 25;258(18):10967–10972. [PubMed] [Google Scholar]
  16. Nagayama K., Wüthrich K. Structural interpretation of vicinal proton-proton coupling constants 3JH alpha H beta in the basic pancreatic trypsin inhibitor measured by two-dimensional J-resolved NMR spectroscopy. Eur J Biochem. 1981 Apr;115(3):653–657. doi: 10.1111/j.1432-1033.1981.tb06252.x. [DOI] [PubMed] [Google Scholar]
  17. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  18. Reed J., Kinzel V., Cheng H. C., Walsh D. A. Circular dichroic investigations of secondary structure in synthetic peptide inhibitors of cAMP-dependent protein kinase: a model for inhibitory potential. Biochemistry. 1987 Dec 1;26(24):7641–7647. doi: 10.1021/bi00398a017. [DOI] [PubMed] [Google Scholar]
  19. Scott J. D., Fischer E. H., Takio K., Demaille J. G., Krebs E. G. Amino acid sequence of the heat-stable inhibitor of the cAMP-dependent protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5732–5736. doi: 10.1073/pnas.82.17.5732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scott J. D., Glaccum M. B., Fischer E. H., Krebs E. G. Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1613–1616. doi: 10.1073/pnas.83.6.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Trewhella J., Liddle W. K., Heidorn D. B., Strynadka N. Calmodulin and troponin C structures studied by Fourier transform infrared spectroscopy: effects of Ca2+ and Mg2+ binding. Biochemistry. 1989 Feb 7;28(3):1294–1301. doi: 10.1021/bi00429a052. [DOI] [PubMed] [Google Scholar]
  22. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES