Abstract
The peptide-bond-specificity of bovine spleen cathepsin S in the cleavage of the oxidized insulin B-chain and peptide methylcoumarylamide substrates was investigated and the results are compared with those obtained with rat liver cathepsins L and B. Major cleavage sites in the oxidized insulin B-chain generated by cathepsin S are the bonds Glu13-Ala14, Leu17-Val18 and Phe23-Tyr26; minor cleavage sites are the bonds Asn3-Gln4, Ser9-His10 and Leu15-Tyr16. The bond-specificity of this proteinase is in part similar to the specificities of cathepsin L and cathepsin N. Larger differences are discernible in the reaction with synthetic peptide substrates. Cathepsin S prefers smaller neutral amino acid residues in the subsites S2 and S3, whereas cathepsin L efficiently hydrolyses substrates with bulky hydrophobic residues in the P2 and P3 positions. The results obtained from inhibitor studies differ somewhat from those based on substrates. Z-Phe-Ala-CH2F (where Z- represents benzyloxycarbonyl-) is a very potent time-dependent inhibitor for cathepsin S, and inhibits this proteinase 30 times more efficiently than it does cathepsin L and about 300 times better than it does cathepsin B. By contrast, the peptidylmethanes Z-Val-Phe-CH3 and Z-Phe-Lys(Z)-CH3 inhibit competitively both cathepsin S and cathepsin L in the micromolar range.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
- Bauer C. A. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'1. Biochim Biophys Acta. 1976 Jul 8;438(2):495–502. doi: 10.1016/0005-2744(76)90265-5. [DOI] [PubMed] [Google Scholar]
- Brömme D., Bartels B., Kirschke H., Fittkau S. Peptide methyl ketones as reversible inhibitors of cysteine proteinases. J Enzyme Inhib. 1989;3(1):13–21. doi: 10.3109/14756368909030360. [DOI] [PubMed] [Google Scholar]
- Brömme D., Bescherer K., Kirschke H., Fittkau S. Enzyme-substrate interactions in the hydrolysis of peptides by cathepsins B and H from rat liver. Biochem J. 1987 Jul 15;245(2):381–385. doi: 10.1042/bj2450381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brömme D., Peters K., Fink S., Fittkau S. Enzyme-substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN', and proteinase K. Arch Biochem Biophys. 1986 Feb 1;244(2):439–446. doi: 10.1016/0003-9861(86)90611-9. [DOI] [PubMed] [Google Scholar]
- Eulitz M., Götze D., Hilschmann N. Die Primärstruktur einer humanen Immunglobulin-L-Kette vom kappa-Typ (Bence-Jones-Protein Scw.), I. Tryptische Peptide. Hoppe Seylers Z Physiol Chem. 1974 Jul;355(7):819–841. [PubMed] [Google Scholar]
- Evans P., Etherington D. J. Action of cathepsin N on the oxidized B-chain of bovine insulin. FEBS Lett. 1979 Mar 1;99(1):55–58. doi: 10.1016/0014-5793(79)80247-1. [DOI] [PubMed] [Google Scholar]
- Gal S., Gottesman M. M. The major excreted protein (MEP) of transformed mouse cells and cathepsin L have similar protease specificity. Biochem Biophys Res Commun. 1986 Aug 29;139(1):156–162. doi: 10.1016/s0006-291x(86)80093-6. [DOI] [PubMed] [Google Scholar]
- Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
- Kirschke H., Locnikar P., Turk V. Species variations amongst lysosomal cysteine proteinases. FEBS Lett. 1984 Aug 20;174(1):123–127. doi: 10.1016/0014-5793(84)81089-3. [DOI] [PubMed] [Google Scholar]
- Kirschke H., Pepperle M., Schmidt I., Wiederanders B. Are there species differences amongst the lysosomal cysteine proteinases? Biomed Biochim Acta. 1986;45(11-12):1441–1446. [PubMed] [Google Scholar]
- Kirschke H., Schmidt I., Wiederanders B. Cathepsin S. The cysteine proteinase from bovine lymphoid tissue is distinct from cathepsin L (EC 3.4.22.15). Biochem J. 1986 Dec 1;240(2):455–459. doi: 10.1042/bj2400455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschke H., Wiederanders B., Brömme D., Rinne A. Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochem J. 1989 Dec 1;264(2):467–473. doi: 10.1042/bj2640467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kärgel H. J., Dettmer R., Etzold G., Kirschke H., Bohley P., Langner J. Action of cathepsin L on the oxidized B-chain of bovine insulin. FEBS Lett. 1980 Jun 2;114(2):257–260. doi: 10.1016/0014-5793(80)81128-8. [DOI] [PubMed] [Google Scholar]
- Maciewicz R. A., Etherington D. J. A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem J. 1988 Dec 1;256(2):433–440. doi: 10.1042/bj2560433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason R. W., Green G. D., Barrett A. J. Human liver cathepsin L. Biochem J. 1985 Feb 15;226(1):233–241. doi: 10.1042/bj2260233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason R. W. Species variations amongst lysosomal cysteine proteinases. Biomed Biochim Acta. 1986;45(11-12):1433–1440. [PubMed] [Google Scholar]
- Mason R. W., Taylor M. A., Etherington D. J. The purification and properties of cathepsin L from rabbit liver. Biochem J. 1984 Jan 1;217(1):209–217. doi: 10.1042/bj2170209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKay M. J., Offermann M. K., Barrett A. J., Bond J. S. Action of human liver cathepsin B on the oxidized insulin B chain. Biochem J. 1983 Aug 1;213(2):467–471. doi: 10.1042/bj2130467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasnick D. Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem. 1985 Sep;149(2):461–465. doi: 10.1016/0003-2697(85)90598-6. [DOI] [PubMed] [Google Scholar]
- Rauber P., Angliker H., Walker B., Shaw E. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases. Biochem J. 1986 Nov 1;239(3):633–640. doi: 10.1042/bj2390633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Schiltz E., Schnackerz K. D., Gracy R. W. Comparison of ninhydrin, fluorescamine, and o-phthaldialdehyde for the detection of amino acids and peptides and their effects on the recovery and composition of peptides from thin-layer fingerprints. Anal Biochem. 1977 May 1;79(1-2):33–41. doi: 10.1016/0003-2697(77)90375-x. [DOI] [PubMed] [Google Scholar]
- Smith R. A., Copp L. J., Donnelly S. L., Spencer R. W., Krantz A. Inhibition of cathepsin B by peptidyl aldehydes and ketones: slow-binding behavior of a trifluoromethyl ketone. Biochemistry. 1988 Aug 23;27(17):6568–6573. doi: 10.1021/bi00417a056. [DOI] [PubMed] [Google Scholar]
- Thompson R. C., Blout E. R. Restrictions on the binding of proline-containing peptides to elastase. Biochemistry. 1973 Jan 2;12(1):51–57. doi: 10.1021/bi00725a010. [DOI] [PubMed] [Google Scholar]
- Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
- Turnsek T., Kregar I., Lebez D. Acid sulphydryl protease from calf lymph nodes. Biochim Biophys Acta. 1975 Oct 22;403(2):514–520. doi: 10.1016/0005-2744(75)90079-0. [DOI] [PubMed] [Google Scholar]