Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 1;264(2):489–493. doi: 10.1042/bj2640489

Schiff-base deprotonation is mandatory for light-dependent rhodopsin phosphorylation.

B Seckler 1, R R Rando 1
PMCID: PMC1133606  PMID: 2604728

Abstract

The absorption of light by rhodopsin leads to the formation of an activated intermediate (R*) capable of catalysing the exchange of GTP for GDP in a retinal guanine-nucleotide-binding regulatory protein (transducin). The ability of R* to function as a catalyst is terminated by the rhodopsin kinase. The 10 nonactive-site lysine residues of rhodopsin can be reductively dimethylated to form permethylated rhodopsin (PMRh). This derivative is phosphorylated to the same extent as rhodopsin after photolysis. The monomethylation of the active-site lysine residue of PMRh yields active-site-methylated rhodopsin (AMRh). It had previously been shown, by using AMRh, that the formation of R* and its spectroscopic signature metarhodopsin II requires the photochemically induced deprotonation of the active-site Schiff base [Longstaff, Calhoon & Rando (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4209-4213]. Here it is demonstrated that active-site Schiff-base deprotonation is also mandatory in the formation of the form of photolyzed rhodopsin that is susceptible to phosphorylation by rhodopsin kinase. In terms of the spectroscopically defined rhodopsin intermediates, this means that only metarhodopsin II and possibly metarhodopsin III are the actual substrates for rhodopsin kinase.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett N., Michel-Villaz M., Kühn H. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Eur J Biochem. 1982 Sep;127(1):97–103. doi: 10.1111/j.1432-1033.1982.tb06842.x. [DOI] [PubMed] [Google Scholar]
  2. Birge R. R. Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Annu Rev Biophys Bioeng. 1981;10:315–354. doi: 10.1146/annurev.bb.10.060181.001531. [DOI] [PubMed] [Google Scholar]
  3. Cooper A., Converse C. A. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes. Biochemistry. 1976 Jul 13;15(14):2970–2978. doi: 10.1021/bi00659a006. [DOI] [PubMed] [Google Scholar]
  4. Corbin J. D., Reimann E. M. Assay of cyclic AMP-dependent protein kinases. Methods Enzymol. 1974;38:287–290. doi: 10.1016/0076-6879(74)38044-5. [DOI] [PubMed] [Google Scholar]
  5. Dohlman H. G., Caron M. G., Lefkowitz R. J. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry. 1987 May 19;26(10):2657–2664. doi: 10.1021/bi00384a001. [DOI] [PubMed] [Google Scholar]
  6. Emeis D., Kühn H., Reichert J., Hofmann K. P. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 1982 Jun 21;143(1):29–34. doi: 10.1016/0014-5793(82)80266-4. [DOI] [PubMed] [Google Scholar]
  7. Furth A. J. Removing unbound detergent from hydrophobic proteins. Anal Biochem. 1980 Dec;109(2):207–215. doi: 10.1016/0003-2697(80)90638-7. [DOI] [PubMed] [Google Scholar]
  8. Kühn H., Dreyer W. J. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 1972 Jan 15;20(1):1–6. doi: 10.1016/0014-5793(72)80002-4. [DOI] [PubMed] [Google Scholar]
  9. Longstaff C., Calhoon R. D., Rando R. R. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4209–4213. doi: 10.1073/pnas.83.12.4209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Longstaff C., Rando R. R. Methylation of the active-site lysine of rhodopsin. Biochemistry. 1985 Dec 31;24(27):8137–8145. doi: 10.1021/bi00348a045. [DOI] [PubMed] [Google Scholar]
  11. McDowell J. H., Kühn H. Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: substrate activation and inactivation. Biochemistry. 1977 Sep 6;16(18):4054–4060. doi: 10.1021/bi00637a018. [DOI] [PubMed] [Google Scholar]
  12. Miller J. L., Fox D. A., Litman B. J. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Biochemistry. 1986 Sep 9;25(18):4983–4988. doi: 10.1021/bi00366a002. [DOI] [PubMed] [Google Scholar]
  13. Paulsen R., Bentrop J. Activation of rhodopsin phosphorylation is triggered by the lumirhodopsin-metarhodopsin I transition. 1983 Mar 31-Apr 6Nature. 302(5907):417–419. doi: 10.1038/302417a0. [DOI] [PubMed] [Google Scholar]
  14. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  15. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  16. Shichi H., Somers R. L. Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase. J Biol Chem. 1978 Oct 10;253(19):7040–7046. [PubMed] [Google Scholar]
  17. Sitaramayya A., Liebman P. A. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J Biol Chem. 1983 Oct 25;258(20):12106–12109. [PubMed] [Google Scholar]
  18. Sitaramayya A. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry. 1986 Sep 23;25(19):5460–5468. doi: 10.1021/bi00367a017. [DOI] [PubMed] [Google Scholar]
  19. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119. doi: 10.1146/annurev.ne.09.030186.000511. [DOI] [PubMed] [Google Scholar]
  20. Trepman E., Chen R. F. Fluorescence stopped-flow study of the o-phthaldialdehyde reaction. Arch Biochem Biophys. 1980 Oct 15;204(2):524–532. doi: 10.1016/0003-9861(80)90064-8. [DOI] [PubMed] [Google Scholar]
  21. Ueno M., Tanford C., Reynolds J. A. Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability. Biochemistry. 1984 Jun 19;23(13):3070–3076. doi: 10.1021/bi00308a034. [DOI] [PubMed] [Google Scholar]
  22. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilden U., Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry. 1982 Jun 8;21(12):3014–3022. doi: 10.1021/bi00541a032. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto K., Shichi H. Rhodopsin phosphorylation occurs at metarhodopsin II level. Biophys Struct Mech. 1983;9(4):259–267. doi: 10.1007/BF00535661. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES