Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 15;264(3):679–685. doi: 10.1042/bj2640679

Purification and characterization of a cytosolic transglutaminase from a cultured human tumour-cell line.

C Y Dadabay 1, L J Pike 1
PMCID: PMC1133640  PMID: 2575900

Abstract

Transglutaminases are a family of Ca2(+)-dependent enzymes that catalyse the formation of isopeptide bonds between the side chains of glutamine and lysine residues. The enzymes have been hypothesized to be involved in a wide range of cellular processes, including growth and differentiation and stabilization of the cytoskeleton. The human epidermal carcinoma-cell line, A431 cells, have relatively high amounts of a cytosolic transglutaminase activity that varies upon treatment of the cells with epidermal growth factor. We demonstrate here that this cytosolic activity has the biochemical and immunological properties of a tissue transglutaminase. We also report the purification of this enzyme to apparent homogeneity by a protocol which involves a novel affinity-elution step. Polyclonal antibodies to the transglutaminase were raised and used to identify the enzyme by Western blotting. The availability of purified transglutaminase and antitransglutaminase antibodies will permit further study of the role of this enzyme in the growth of this hormone-responsive human tumour-cell line.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Chung S. I., DiAugustine R. P., Folk J. E. Rabbit liver transglutaminase: physical, chemical, and catalytic properties. Biochemistry. 1977 Dec 13;16(25):5495–5501. doi: 10.1021/bi00644a016. [DOI] [PubMed] [Google Scholar]
  2. Birckbichler P. J., Carter H. A., Orr G. R., Conway E., Patterson M. K., Jr epsilon-(gamma-Glutamyl)lysine isopeptide bonds in normal and virus transformed human fibroblasts. Biochem Biophys Res Commun. 1978 Sep 14;84(1):232–237. doi: 10.1016/0006-291x(78)90287-5. [DOI] [PubMed] [Google Scholar]
  3. Birckbichler P. J., Dowben R. M., Matacic S., Loewy A. G. Isopeptide bonds in membrane proteins from eukaryotic cells. Biochim Biophys Acta. 1973 Jan 2;291(1):149–155. doi: 10.1016/0005-2736(73)90070-9. [DOI] [PubMed] [Google Scholar]
  4. Birckbichler P. J., Orr G. R., Patterson M. K., Jr Differential transglutaminase distribution in normal rat liver and rat hepatoma. Cancer Res. 1976 Aug;36(8):2911–2914. [PubMed] [Google Scholar]
  5. Birckbichler P. J., Patterson M. K., Jr Cellular transglutaminase, growth, and transformation. Ann N Y Acad Sci. 1978 Jun 20;312:354–365. doi: 10.1111/j.1749-6632.1978.tb16813.x. [DOI] [PubMed] [Google Scholar]
  6. Bungay P. J., Owen R. A., Coutts I. C., Griffin M. A role for transglutaminase in glucose-stimulated insulin release from the pancreatic beta-cell. Biochem J. 1986 Apr 1;235(1):269–278. doi: 10.1042/bj2350269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Byrd J. C., Lichti U. Two types of transglutaminase in the PC12 pheochromocytoma cell line. Stimulation by sodium butyrate. J Biol Chem. 1987 Aug 25;262(24):11699–11705. [PubMed] [Google Scholar]
  8. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  9. Chinkers M., McKanna J. A., Cohen S. Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factors. J Cell Biol. 1979 Oct;83(1):260–265. doi: 10.1083/jcb.83.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chung S. I., Folk J. E. Transglutaminase from hair follicle of guinea pig (crosslinking-fibrin-glutamyllysine-isoenzymes-purified enzyme). Proc Natl Acad Sci U S A. 1972 Feb;69(2):303–307. doi: 10.1073/pnas.69.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Connellan J. M., Chung S. I., Whetzel N. K., Bradley L. M., Folk J. E. Structural properties of guinea pig liver transglutaminase. J Biol Chem. 1971 Feb 25;246(4):1093–1098. [PubMed] [Google Scholar]
  12. Croall D. E., DeMartino G. N. Calcium-dependent affinity purification of transglutaminase from rat liver cytosol. Cell Calcium. 1986 Feb;7(1):29–39. doi: 10.1016/0143-4160(86)90028-x. [DOI] [PubMed] [Google Scholar]
  13. Dadabay C. Y., Pike L. J. Rapid increases in the transglutaminase activity of A431 cells following treatment with epidermal growth factor. Biochemistry. 1987 Oct 20;26(21):6587–6591. doi: 10.1021/bi00395a004. [DOI] [PubMed] [Google Scholar]
  14. Fabricant R. N., De Larco J. E., Todaro G. J. Nerve growth factor receptors on human melanoma cells in culture. Proc Natl Acad Sci U S A. 1977 Feb;74(2):565–569. doi: 10.1073/pnas.74.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
  16. Folk J. E., Park M. H., Chung S. I., Schrode J., Lester E. P., Cooper H. L. Polyamines as physiological substrates for transglutaminases. J Biol Chem. 1980 Apr 25;255(8):3695–3700. [PubMed] [Google Scholar]
  17. Folk J. E. Transglutaminases. Annu Rev Biochem. 1980;49:517–531. doi: 10.1146/annurev.bi.49.070180.002505. [DOI] [PubMed] [Google Scholar]
  18. Fritz P. J. Rabbit muscle lactate dehydrogenase 5; a regulatory enzyme. Science. 1965 Oct 15;150(3694):364–366. doi: 10.1126/science.150.3694.364. [DOI] [PubMed] [Google Scholar]
  19. Gill G. N., Lazar C. S. Increased phosphotyrosine content and inhibition of proliferation in EGF-treated A431 cells. Nature. 1981 Sep 24;293(5830):305–307. doi: 10.1038/293305a0. [DOI] [PubMed] [Google Scholar]
  20. Gomis R., Alarcon C., Valverde I., Malaisse W. J. Role of transglutaminase in proinsulin conversion and insulin release. Adv Exp Med Biol. 1986;211:443–446. doi: 10.1007/978-1-4684-5314-0_44. [DOI] [PubMed] [Google Scholar]
  21. Harding H. W., Rogers G. E. Formation of the -( -glutamyl) lysine cross-link in hair proteins. Investigation of transamidases in hair follicles. Biochemistry. 1972 Jul 18;11(15):2858–2863. doi: 10.1021/bi00765a019. [DOI] [PubMed] [Google Scholar]
  22. King I. C., Sartorelli A. C. The relationship between epidermal growth factor receptors and the terminal differentiation of A431 carcinoma cells. Biochem Biophys Res Commun. 1986 Nov 14;140(3):837–843. doi: 10.1016/0006-291x(86)90710-2. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lichti U., Ben T., Yuspa S. H. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J Biol Chem. 1985 Feb 10;260(3):1422–1426. [PubMed] [Google Scholar]
  26. Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
  27. Maccioni R. B., Arechaga J. Transglutaminase (TG) involvement in early embryogenesis. Exp Cell Res. 1986 Nov;167(1):266–270. doi: 10.1016/0014-4827(86)90224-7. [DOI] [PubMed] [Google Scholar]
  28. Maddox A. M., Haddox M. K. Transglutaminase activity increases in HL60 cells induced to differentiate with retinoic acid and TPA but not with DMSO. Exp Cell Biol. 1985;53(5):294–300. doi: 10.1159/000163325. [DOI] [PubMed] [Google Scholar]
  29. Murtaugh M. P., Mehta K., Johnson J., Myers M., Juliano R. L., Davies P. J. Induction of tissue transglutaminase in mouse peritoneal macrophages. J Biol Chem. 1983 Sep 25;258(18):11074–11081. [PubMed] [Google Scholar]
  30. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  31. Rice R. H., Green H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 1977 Jun;11(2):417–422. doi: 10.1016/0092-8674(77)90059-9. [DOI] [PubMed] [Google Scholar]
  32. Rosdy M., Bernard B. A., Schmidt R., Darmon M. Incomplete epidermal differentiation of A431 epidermoid carcinoma cells. In Vitro Cell Dev Biol. 1986 May;22(5):295–300. doi: 10.1007/BF02621233. [DOI] [PubMed] [Google Scholar]
  33. Rothnagel J. A., Rogers G. E. Transglutaminase-mediated cross-linking in mammalian epidermis. Mol Cell Biochem. 1984;58(1-2):113–119. doi: 10.1007/BF00240610. [DOI] [PubMed] [Google Scholar]
  34. Schmidt R., Michel S., Shroot B., Reichert U. Transglutaminases in normal and transformed human keratinocytes in culture. J Invest Dermatol. 1988 Apr;90(4):475–479. doi: 10.1111/1523-1747.ep12460936. [DOI] [PubMed] [Google Scholar]
  35. Wrann M. M., Fox C. F. Identification of epidermal growth factor receptors in a hyperproducing human epidermoid carcinoma cell line. J Biol Chem. 1979 Sep 10;254(17):8083–8086. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES