Skip to main content
Heliyon logoLink to Heliyon
. 2024 Jul 26;10(15):e35258. doi: 10.1016/j.heliyon.2024.e35258

The status of plant diversity in different land use types of agricultural landscape of west Oromia, Ethiopia

Zerihun Tadesse a,b,, Sileshi Nemomissa a, Debissa Lemessa a
PMCID: PMC11336467  PMID: 39170570

Abstract

Understanding how land use types embedded in agricultural landscapes support forest biodiversity is critical, especially during this period of continuing fragmentation and habitat losses in natural ecosystems. Here, we explored the floristic species composition with respect to land use types in the agroecosystem of west Oromia, Ethiopia. For this, a systematic sampling method was employed to collect floristic data from 122 main quadrats and 610 sub-quadrats, following transects laid out with a 1500-m interval. The main quadrats were arranged on transects with an 800-m interval to assess woody species, and five sub-quadrats (i.e., four at the corners and one at the center) were taken within each main plot to assess herbaceous plants. Accordingly, the floristics were assessed with respect to the identified five land use types, including crop land, forest, grazing land, home gardens, and riverine. We used a one-way ANOVA to test the difference in species diversity among the land use types. Adonis 2 and indval functions were used to describe the species composition and indicator species in relation to the land use types. Moreover, NMDS was applied to visualize the associations of the species composition with environmental variables in ordination space. A total of 285 plant species belonging to 220 genera and 89 families were recorded. Our results showed significant differences in species diversity, dissimilarity in species composition, and species indicator values among the land use types. These results indicate that the potentiality of the land use types in supporting plant diversity is significantly different; for example, species diversity and abundances were higher in grazing lands and home gardens when compared with other land use types. Overall, our findings suggest that conservation strategies in agricultural landscapes should take into account the differences in capacity for supporting biodiversity among land use types when planning.

Keywords: Dry afromontane, Degradation, Matrix land, Refugia, Species richness, Vegetation

1. Introduction

Plant biodiversity has faced a serious degradation problem because of the declining extent of vegetation cover and its qualities from time to time [[1], [2], [3]]. The decline of vegetation in extent and quality could enhance the increasing loss of suitable habitats that can support biological diversities in their natural ecosystem settings [[4], [5], [6]]. Deforestation is the cause of the loss of suitable habitats that can support a wide range of different groups of organisms in the vegetation of natural and semi-natural ecosystems [[7], [8], [9]].

Agricultural land expansion is the main driving factor for the destruction of vegetation and, hence, the loss of habitats for plant biodiversity [[10], [11], [12]]. The agricultural land expansion facilitated through deforestation could lead to the formation of variegated landscapes with mosaics of semi-natural vegetation intermixed with agricultural farm lands [[13], [14], [15], [16]]. This gradual vegetation degradation could result in the formation of semi-natural habitat forms identified as crop land, fragmented forest patches, grazing land, home gardens, and riverine/stream habitats, which are in general known as land use types.

This implies that vegetation studies can be conducted in such landscapes with fragmented forest patches intermixed with other land use forms [17,18]. For example, the diversity of trees and shrubs in fragmented patch forests distributed in agricultural landscapes may show a variation in abundance and richness, as explained in the study [19]. Similarly, plant species that may be absent in the surrounding intact forest could be abundant in nearby agricultural matrix land that is intermixed with mosaics of various fragmented forest patches [20].

Similarly, the strips of riverine vegetation and trees found scattered in farm lands are explained as good indicative remnant marks in agricultural landscapes [21,22]. Patches of shrubs found scattered on the margins of farm lands can also be considered part of vegetation and contribute to the study of the diversity of plant species in agricultural landscapes [20,23]. This indicates that studying plant diversity in agricultural landscapes can contribute to generating a sort of knowledge that attributes biodiversity conservation aspects to such landscapes [[24], [25], [26]].

Similarly, deforestation practiced for a long period could bring considerable changes to the extent of vegetation cover and its qualities at different corners of Ethiopia [27]. Increasing farmer demand for agricultural land, settlements, and intensive state farm expansions practiced in the country were the main causes for the destruction of vegetation cover in wide areas of the country [[28], [29], [30]]. Most previous studies done on vegetation in Ethiopia focused on dense forests and explained the status and changes brought on them due to impacts from anthropogenic pressure [[31], [32], [33]]. The studies could also explain gradual changes that could bring forested areas to fragmented patches intermixed with different land use types that can be explained as agricultural landscapes.

So, conducting vegetation studies in agricultural landscapes is paramount to understanding the diversity of plant species among different land use types. Furthermore, having an understanding of plant species diversity and richness in various land use variables can initiate insights on biodiversity conservation for potential management plans. In west Oromia, where agricultural activities have been widely practiced and could bring considered changes to the land feature for long periods, we intended to conduct a vegetation study in the agricultural landscape, comprising various land use types such as crop land, forest, grazing land, home gardens, and riverine. Here, we hypothesized that there were significant differences in plant species composition and species diversity among different land use types in agricultural landscapes in west Oromia. To test the hypothesis, we analyzed sample vegetation data collected within each of the five land use types in Gudeya Bila District.

2. Materials and methods

2.1. Study area

The study was conducted in Gudeya Bila District, which is situated in west Oromia Region, Ethiopia, between the geographical coordinates of 9o11′33″–9o19′40″ N and 37o0′05″–37o9′24″ E (Fig. 1). The topography of the study area is characterized by a flat land platform, undulating ups and bottoms, rocky hills, and belts of escarpments with steady slopes directing towards the Gibe basin. The study area extends within the altitudinal range of 1970–2899 m.a.s.l. The main soil types in the study area are nitosols and vertisols [34]. The area receives rainfall in a unimodal pattern [35], where the annual average ranges between 1400 and 2000 mm [36]. The vegetation types of the study area belong to the Combretum-Terminalia woodland and Dry evergreen afromontane forest and grassland complex [37]. The agricultural landscape of the study area is heterogeneous and composed of fragmented forest patches, crop land, grassland, grazing land, shrub lands and built-up areas.

Fig. 1.

Fig. 1

The map of the study area shown in relation to the Oromia region and Ethiopia.

2.2. Study design

Taking into account our previous knowledge of vegetation fragmentation and ecological degradation around the study area, we selected agricultural landscape to study plant species diversity in different land use types. Firstly, we observed the satellite images in Google Earth to identify the landscape that encompasses different land use structures such as crop land, forest patches grazing land, riverine area, and home garden (Fig. 1). The total area of the study landscape is 164.3787 km2. Secondly, we laid out parallel transects with a 1500 m interval in the study landscape. On each transect, quadrats of different sizes were arranged with an 800 m interval, and the coordinates of each plot were recorded with a hand-held GPS. Accordingly, to assess woody species, 50 m × 50 m main quadrats were used for crop land, grazing land, and home gardens; for forest and riverine, 20 m × 20 m and 10 m × 50 m were used, respectively. Similarly, five 2 m × 2 m smaller quadrats laid out within the main quadrats (four at the corners and one at the center) were used to assess the data of herbaceous plants. In total, 122 main quadrats and 610 sub-quadrats were used to collect floristic data.

2.3. Data collection

From each main quadrat and subquadrat, trees, shrubs, and herbaceous floristic species were assessed, and the number of stems of shrubs and trees was recorded for the land use types encountered on transects. Here, five land use types, such as forest, riverine, grazing crop land, and home garden, were identified during the assessment. Along with this, the topographic aspect, altitude, and slope of each plot were recorded using a hand-held GPS. Plant specimens were collected, pressed, dried, and transported to the national herbarium of Addis Ababa University for later identification at the species level.

2.4. Data analysis

The species richness, Shannon-Weier diversity index, and the number of stems of trees/shrubs were compared for each plot, and a one-way ANOVA was used to test for differences among the five land use types. After we found the significance difference, we executed the multiple comparisons of the means using the Tukey Honest Significance Difference (Tukey's HSD) with Bonferroni adjusted p-values within the multcomp package. The dissimilarity in species composition among the land use types and the indicator species values were analyzed by employing the Adonis2 function with 999 permutations. Adonis2 is a permutational multivariate analysis of variance (MNOVA) used for partitioning distance matrices among sources of variations among samples by measuring the dissimilarity with the Bray-Curtis distance method. To identify the characteristic and commonly occurring species in relation to the land use types, the indicator species analysis was carried out using indval functions within the labdsv package. Moreover, non-metric multidimensional scaling ordination (NMDS) was applied using the Bray-Curtis distance method to visualize the species composition along with the environmental variables in the ordination space. All statistical analyses were performed using the R statistical computing environment (version 4.2.1., R Core Team 2022).

3. Results

3.1. Species composition

A total of 285 plant species belonging to 220 genera and 89 families were recorded in the study area (Appendix 1). From the families recorded, 11.24 % were represented by more than five species, and this has contributed to 48.07 % of the total species. From these, Asteraceae, Fabaceae, Poaceae, Lamiaceae, and Solanaceae are the top five families. About 47.2 % of each of the recorded families is represented only by one species. For example, those species include Apodytes dimidiata (Icacinaceae), Celtis africana (Ulmaceae), Combretum paniculatum (Combretaceae), Grewia ferruginea (Tiliaceae), and Pittosporum viridiflorum (Pittosporaceae).

From the total species, grazing land shares the highest proportion (20.35 %), followed by riverine (18.60 %), home garden (17.54 %), forest (16.84 %), and crop land (16.14 %) with other land use types (Fig. 2). However, the unique species for each land use type is higher for grazing land (22.46 %), followed by home gardens (14.39 %), and crop land (8.07 %).

Fig. 2.

Fig. 2

The bar graph showing the shared and unique and total species richness with respect to the land us types.

The species composition was significantly dissimilar among the land use types (Adonis2, p < 0.001). This dissimilarity was clearly indicated by the significant differences in indicator species values among the land use types (Table 1). Accordingly, Ficus vasta, Cordia africana and Achyranthes aspera are common in crop land; Hypoestes forskaolii, Vernonia myriantha, Calpurnia aurea, Carissa spinarum, Allophylus abyssinicus, Apodytes dimidiata and Teclea nobilis in forest land use; Erythrococca abyssinica, Tapinanthus heteromorphus, Hygrophila schulli and Erythrina brucei in grazing land; Coffea arabica, Justicia schimperiana, Caesalpinia decapetala, Musa paradisiaca, Vernonia amygdalina, Catha edulis in home gardens; and Celtis africana, Vangueria apiculata, Phytolacca dodecandra, Ficus sur, Dracaena steudneri and Millettia ferruginea were the indicator species in riverine land use types (Table 1).

Table 1.

Indicator species showing the diversity of the land use types with significant statistical value (p < 0.05).

Species Crop land Forest Grazing land Homegarden Riverine p-values
Caesalpinia decapetala 0.000 0.000 0.000 0.266 0.000 0.001
Celtis africana 0.054 0.164 0.042 0.001 0.315 0.001
Coffea arabica 0.000 0.000 0.000 0.345 0.040 0.001
Dracaena steudneri 0.000 0.006 0.000 0.000 0.233 0.001
Ficus vasta 0.268 0.000 0.000 0.000 0.000 0.001
Hypoestes forskaolii 0.000 0.400 0.000 0.000 0.000 0.001
Justicia schimperiana 0.000 0.000 0.002 0.318 0.000 0.001
Musa paradisiaca 0.000 0.000 0.000 0.233 0.000 0.001
Phytolacca dodecandra 0.000 0.000 0.000 0.001 0.250 0.001
Vangueria apiculata 0.000 0.000 0.000 0.000 0.266 0.001
Allophylus abyssinicus 0.000 0.217 0.000 0.000 0.036 0.002
Carissa spinarum 0.000 0.241 0.017 0.000 0.105 0.002
Millettia ferruginea 0.000 0.046 0.000 0.000 0.230 0.002
Apodytes dimidiata 0.023 0.204 0.021 0.001 0.000 0.003
Cordia africana 0.260 0.050 0.020 0.120 0.030 0.003
Erythrococca abyssinica 0.000 0.000 0.187 0.000 0.000 0.003
Ricinus communis 0.000 0.000 0.000 0.200 0.000 0.003
Teclea nobilis 0.000 0.180 0.000 0.000 0.037 0.003
Catha edulis 0.000 0.000 0.000 0.200 0.000 0.004
Vernonia myriantha 0.008 0.290 0.102 0.013 0.050 0.004
Vernonia amygdalina 0.000 0.004 0.002 0.220 0.127 0.005
Adiantum poiretii 0.000 0.150 0.000 0.000 0.000 0.006
Hygrophila schulli 0.002 0.000 0.165 0.000 0.000 0.007
Mangifera indica 0.000 0.000 0.000 0.166 0.000 0.007
Solanecio gigas 0.000 0.000 0.187 0.000 0.000 0.007
Dombeya torrida 0.000 0.150 0.000 0.000 0.000 0.008
Ficus sur 0.015 0.178 0.032 0.000 0.244 0.009
Vepris dainellii 0.000 0.150 0.000 0.000 0.000 0.010
Rhamnus prinoides 0.000 0.000 0.000 0.177 0.044 0.011
Plectranthus punctatus 0.000 0.000 0.000 0.000 0.133 0.012
Urera hypselodendron 0.000 0.000 0.000 0.000 0.133 0.013
Ensete ventricosum 0.000 0.000 0.000 0.166 0.000 0.014
Erythrina brucei 0.000 0.006 0.157 0.001 0.064 0.015
Calpurnia aurea 0.044 0.257 0.103 0.113 0.027 0.016
Persea americana 0.000 0.000 0.000 0.133 0.000 0.016
Rumex abyssinica 0.000 0.000 0.000 0.000 0.133 0.016
Eucalyptus camaldulensis 0.113 0.000 0.000 0.178 0.000 0.020
Schefflera abyssinica 0.014 0.143 0.000 0.002 0.000 0.020
Maesa lanceolata 0.000 0.163 0.012 0.000 0.013 0.022
Desmodium repandum 0.000 0.000 0.000 0.000 0.133 0.024
Rosa abyssinica 0.000 0.124 0.010 0.000 0.000 0.024
Tapinanthus heteromorphus 0.057 0.118 0.185 0.000 0.000 0.024
Hypericum quartinianum 0.000 0.110 0.016 0.000 0.000 0.025
Mikaniopsis clematoides 0.000 0.000 0.125 0.000 0.000 0.027
Rumex nervosus 0.000 0.000 0.120 0.000 0.000 0.027
Laggera crispata 0.000 0.000 0.125 0.000 0.000 0.037
Rubus apetalus 0.000 0.000 0.014 0.000 0.101 0.038
Solanum aculeatissom 0.000 0.000 0.125 0.000 0.000 0.039
Achyranthes aspera 0.122 0.000 0.000 0.005 0.000 0.044
Salix mucronata 0.000 0.000 0.000 0.006 0.106 0.049

The NMDS analysis indicated that the species composition in forest, riverine and grazing land has relatively more association with aspect, slope and altitude gradients as compared crop land, and home garden (Fig. 3).

Fig. 3.

Fig. 3

A non-metric multidimensional scaling (NMDS) plot of the data set by land use types with the aspect, altitude, and slope showing the species dissimilarity composition among the different land use types in the study area.

3.1.1. Species diversity

The result of the one-way ANOVA showed that species richness and stem abundance significantly vary among the land use types (P < 0.05). The mean species richness was highest in grazing land (7.63 ± 0.82), followed by riverine (5.67 ± 1.1), forest (4.40 ± 1.23), home garden (3.03 ± 0.67) and crop land (1.68 ± 1.11). However, the Shannon-Weiner diversity is higher for forest land use (2.99) but lower for the home garden (1.06); (Fig. 4). The species stem density per hectare is higher in grazing land and forest when compared with the other land use types (Fig. 5).

Fig. 4.

Fig. 4

The boxplot showing the species diversity across the land use types (using square root of species diversity). The difference in the lowercase letters on the boxplots shows significant differences in species diversity among the land use types (P < 0.05).

Fig. 5.

Fig. 5

The boxplot showing the abundance of woody stem across the land use types (using square root of species stem abundance). The difference in the lowercase letters on the boxplots shows significant differences in woody stem abundance among the land use types (P < 0.05).

4. Discussions

In agricultural landscapes, different land use systems have emerged as a result of habitat loss and forest fragmentation, which are the main factors contributing to the decline of natural ecosystems. It is crucial to investigate how a variety of plant species are supported by such diverse land use systems embedded in agricultural landscapes. To do this, we evaluated and analyzed the floristic composition, species diversity, species richness, woody stem abundance, and indicator species for diverse plant species across a range of land use systems in the agricultural landscape of west Oromia. The overall findings of the study are consistent with data compiled on the flora of Ethiopia and Eritrea since the Asteraceae, Fabaceae, and Poaceae families consist of the most prevalent species in the agroecosystem (Appendix I). Their dominant position could perhaps be due to efficient pollination and successful seed dispersal mechanisms that might have contributed to their adaptation to spread over a wide range of ecological conditions [38,39]. Contrarily, families like Icacinaceae, Ulmaceae, Combretaceae, Tiliaceae, and Pittosporaceae, which are represented by only species, may be lost from the area because of environmental impacts like human overexploitation.

The proportions of total species shared and unique within each land use type may explain the association among the land use types (Fig. 2). In grazing land, 22.46 % of the total species that were unique to the land use type could contribute to the extent of dissimilarity it has from the other land use types. Similarly, the lowest value evaluated for the proportion of species unique to crop land (8.07 %) indicated that its dissimilarity with the other land use types is lower. On the contrary, the highest and lowest proportions of species shared by grazing land (20.35 %) and crop land (16.14 %), respectively, could contribute to the similarity the various land use types have in common. The higher proportion of species found in grazing land (20.35 %) and riverine (18.60 %) compared to other land use types indicated that they are playing important roles in conserving plant species diversities in the landscape.

Despite the land use types that are making this important contribution, most tree species like Albizia schimperiana, Celtis africana, Cordia africana and Vachellia abyssinica were found standing without representative seedlings in the crop land, grazing land, and home garden. The highest proportion of species occurrence only in the grazing land contributes to the highest records of herbaceous plants obtained from the land use type than in the others.

The output of species dissimilarity analysis indicated that the contribution of species composition to the variation of land use types was based on the contribution of indicator species (Table 1). The fact that Hypoestes forskaolii, Vernoni amyriantha, Calpurnia aurea, Carissa spinarum, Allophylus abyssinicus, Apodytes dimidiata and Teclea nobilis species contributed to the dissimilarity of the forest indicates that these species have higher occurrence records in the forest than the rest of the land use types. Similarly, the species Erythrococca abyssinica, Solanecio gigas, Hygrophila schulli and Erythrina brucei in the grazing land and Ficus vasta, Cordia africana and Achyranthes aspera in the crop land showed the dissimilarity of the land use types due to their higher occurrence proportions. Focusing on the home garden, Coffea arabica, Musa paradisiaca, Catha edulis, Rhamnu sprinoides, Mangifera indica, Ensete ventricosum and Persea americana played an important role in the variation of land use types in species composition. Here, the dissimilarity of species composition played a role in the variation and could be contributed to by a human-assisted conservation intervention because of the economic significance of the species.

Conversely, species such as Vangueria apiculata, Ficus sur, Dracaena steudneri, Millettia ferruginea, and Salix mucronata played a role in land use variation in the riverine area. The species contribution to this dissimilarity in the riverine area could be due to their affinity to survive in wetland d environments. Land use cover change can contribute to the variation of species composition observed among the land use types due to anthropogenic impacts exerted on land features when utilizing them for different purposes [40,41].

The NMDS ordination analysis indicated that altitude and slope determined the distributions of plant species in the forest, grazing land, and riverine, while their influences were slightly moderate on those distributed in the crop land and home garden (Fig. 3). On the other hand, despite aspects that seem to have a contribution to influence the species distribution in the forest, grazing land, and riverine, their influence is low as compared with the altitude and slope (Fig. 3). This aspect could have little influence on the plant species distribution in the study landscape because Ethiopia is located in a tropical region where sunlight is almost fully available in all directions [42]. In the landscape, the highest species diversity index (i.e., with greater equitability) achieved by the forest (2.99) and crop land (1.86) allowed them to be more stable in species composition. Conversely, grazing land, the most species-rich land use type (7.63 ± 0.82), achieved a lower value of the species diversity index (1.53) and a lower value of equitability. This may be due to the fact that plant species found in the forest are comparatively less exposed to destruction and due to the contribution of remnant standing shade trees left in the crop land for a long time [43,44]. Moreover, grazing land and home garden land use types consisting of 122 and 91 species, respectively, comprise the most species-rich positions in the landscape and can be explained as semi-natural potential refugia for implementing species conservation management practices [45,46]. In general, the variations observed in the distribution patterns of species richness and stem abundance among the different land use types (Fig. 4, Fig. 5) may be attributed to selective cuttings exerted on some woody species [[47], [48], [49]] by local communities for different purposes. However, as our objective did not include seeing the regeneration status of the vegetation, this study has focused only on species composition and diversity aspects. So, not making an assessment of the regeneration status of the plant species recorded in the land use habitats is a limitation of the study, and thus interested researchers can fill the potential gap.

5. Conclusion

A landscape comprising different land use management units utilized for crop cultivation, cattle grazing, human settlement, and traditionally conserving fragmented forest patches can be considered an agricultural landscape. Such land use types can support a vast number of biological diversities and thus play important roles in maintaining the overall well-being of local ecosystems. Based on the results of our study, it is clear that a variety of plant species are distributed across different land use patterns identified in the agricultural landscape. The fact that the grazing land and home garden took the most species-rich position indicated that these human-modified habitats can be considered as potential refugia for conserving important plant species. Additionally, despite some economically important plant species being managed in some home gardens, they are lacking in most home gardens of the local community. Moreover, remnant patch forests found in the study landscape are still experiencing serious degradation and thus need close conservation management attention. Therefore, plant biodiversity conservationists should pay close attention to the roles played by land use types in conserving diverse plant species in agroecosystems and incorporate conservation strategies into their plans for their further implementation. In conclusion, studying the regeneration status, soil seed bank, and carbon sequestration are future potential research areas in the ecological area.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability statement

The data used in the study will be made available on request from the corresponding author.

CRediT authorship contribution statement

Zerihun Tadesse: Validation, Software, Methodology, Formal analysis, Data curation, Conceptualization. Sileshi Nemomissa: Supervision, Methodology, Conceptualization. Debissa Lemessa: Supervision, Software, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We express our gratitude to Addis Ababa University and Wollega University for their financial support. We thank the Gudeya Bila District Administration and local communities for allowing us to collect data. Our thanks also go to Shitaye Deti, Kemal Mustefa, and Habtamu Getachew for their full assistance during the data collection.

Appendix 1. List of plant species recorded from the study landscape in Gudeya Bila District: crop land (Cl), fragmented forest (Fr), grazing land (Gl), home garden (Hg) and riverine (Rv)

No Species Family Land use types Coll. code
1 Acanthus eminens C.B.Clarke Acanthaceae Rv ZT176
2 Acanthus polystachius Delile Amaranthaceae Cl Fr Gl Rv ZT001
3 Achyranthes aspera L. Amarantaceae Cl Hg ZT145
4 Adiantum poiretii Wikstr. Adiantaceae Fr ZT148
5 Aeschynomene schimperi Hochst. exA. Rich. Fabaceae Hg ZT149
6 Agave sisenara Perrine ex Engl. Aloaceae Cl Hg ZT158
7 Ageratum conyzoides L. Asteraceae Hg ZT159
8 Albizia schimperiana Oliv. Fabaceae Cl Fr Gl Hg Rv ZT004
9 Allophylus abyssinicus (Hochst.) Radlk. Sapindaceae Fr Rv ZT006
10 Alcea roseus L. Malvaceae Hg ZT003
11 Amaranthus spinosus L. Amaranthaceae Hg Rv ZT002
12 Amorphophallus abyssinicus (A. Rich.) N.E. Sr. Araceae Rv ZT011
13 Amphicarpa africana (Hook. f.) Harms Fabaceae Fr ZT089
14 Anagalis arvensis L. Primulaceae Fr ZT239
15 Andropogon abyssinicus Fresen. Poaceae Cl Hg ZT173
16 Anethum graveolens L. Apiaceae Gl ZT223
17 Apodytes dimidiata E. Mey. ex Am Icacinaceae Cl Fr Gl Hg ZT224
18 Argemone mexicana L Solanaceae Cl Gl ZT241
19 Arisaema schimperiana Schott Araceae Rv ZT016
20 Arundinaria alpina K.Schum. Poaceae Cl ZT123
21 Arundo donax L. Poaceae Hg ZT187
22 Asparagus africanus Lam. Asparagaceae Fr ZT210
23 Bartsia trixago L. Scrophulariaceae Gl ZT268
24 Berkheya spekeana Oliv. Asteraceae Cl ZT042
25 Bersama abyssinica Fresen. Melianthaceae Fr Gl Hg Rv ZT069
26 Bidens biternata (Lour.) Merr. & Sherfft Asteraceae Hg ZT012
27 Bidens pilosa L. Asteraceae Hg ZT019
28 Bidens prestinaria (Sch, Bip.) Cufod. Asteraceae Hg ZT240
29 Bougainvillea spectabilis Witld. Nyctaginaceae Hg ZT206
30 Brucea antidysenterica J.F.Mill. Simaroubaceae Fr Gl Hg Rv ZT101
31 Buddleja cordata B.K. Loganiaceae Fr ZT204
32 Buddleja polystachya Fresen. Loganiaceae Cl Fr Gl Hg Rv ZT264
33 Caesalpinia decapetala (Roth) Alston Fabaceae Hg ZT022
34 Callistemon citrinus (Curtis) Skeels Myrtaceae Hg ZT007
35 Callistemon salignus(Sm.) Sweet Myrtaceae Hg ZT024
36 Calpurnia aurea (Ait.) Benth. Fabaceae Cl Fr Gl Hg Rv ZT026
37 Canarina abyssinica Engl. Campanulaceae Fr ZT027
38 Capparis tomentosa Lam. Capparidaceae Cl Fr Gl Hg Rv ZT028
39 Capsella bursa-pastoris (L.) Medic. Brassicaceae Cl ZT040
40 Carduus nyassanus (S. Moore) R.E. Fries Asteraceae Cl ZT051
41 Carica papaya L. Caricaceae Hg ZT052
42 Carissa spinarum L. Apocynaceae Fr Gl Hg Rv ZT053
43 Casimiroa edulis La Llave Rutaceae Hg ZT071
44 Cassipourea malosana (Baker) Alston Rhizophoraceae Fr ZT074
45 Catha edulis (Vahl) Forssk. a Endl. Celastraceae Hg ZT075
46 Caylusea abyssinica (Fresen.) Fisch. & Mey. Resedaceae Cl Gl Hg ZT076
47 Celtis africana Burm.f. Ulmaceae Cl Fr Gl Hg Rv ZT077
48 Chenopodium album L. Chenopodiaceae Gl ZT078
49 Chenopodium ambrosioides L. Chenopodiaceae Cl ZT079
50 Chionanthus mildbraedii (Gilg & Schel/enb.) Stearn Oleaceae Rv ZT093
51 Cinenaria deltoidea Sond. Asteraceae Rv ZT103
52 Cirsium englerainum O. Asteraceae Gl ZT104
53 Cirsium schimperi (Vatke) C. Jeffrey ex Cufod. Asteraceae Cl ZT124
54 Citrus limon (L.) Bunnf. Rutaceae Hg ZT125
55 Citrus medica L. Rutaceae Hg ZT131
56 Citrus sinensis (L.) Osb. Rutaceae Hg ZT136
57 Clausena anisata (Willd). Benth. Rutaceae Cl Fr ZT137
58 Clematis longicauda Steud.ex A. Rich. Ranunculaceae Fr Gl Hg Rv ZT139
59 Clematis sinensis Fresen. Rununculaceae Rv ZT153
60 Clerodendron myricoides (Hochst.) Vatke Lamiaceae Gl ZT163
61 Clutia abyssinica Jaub. &- Spach. Euphorbiaceae Fr ZT165
62 Coffea arabica L. Rubiaceae Hg Rv ZT177
63 Combretum paniculatum Vent. Combretaceae Fr Gl Hg Rv ZT250
64 Commelina africana L. Commelinaceae Fr ZT257
65 Commelina bengalensis L. Commelinaceae Fr Rv ZT258
66 Commelina diffusa Burm.f. Commelinaceae Gl ZT279
67 Commelina subulata Roth Commelinaceae Gl ZT280
68 Gomphocarpus fruticosus (L.) Ait. f. Apocynaceae Gl ZT281
69 Convolvulus kilimandschari Engl. Convolvulaceae Hg ZT282
70 Conyza stricta Willd. Asteraceae Cl Gl Hg ZT283
71 Copressus lustanica Mill. Cupressaceae Cl Hg ZT284
72 Cordia africana L. Boraginaceae Cl Fr Gl Hg Rv ZT285
73 Cotula abyssinica Sch. Bip. exA. Rich. Asteraceae Fr ZT150
74 Crassocephalum crepidioides (Benth.) S. Moore Asteraceae Cl ZT151
75 Crassocephalum macropappum (Sch. Bip. ex A. Rich.) S. Moore Asteraceae Cl ZT155
76 Crassocephalum rubens (Juss. ex Jacq.) S. Moore Asteraceae Gl Rv ZT259
77 Crepis rueppel Sch. Bip. Asteraceae Cl Gl ZT262
78 Crepis tenerrima (Seh. Hip. ex A. Rich.) R. E. Fries. Asteraceae Gl ZT073
79 Crotalaria emarginella Vatke Fabaceae Rv ZT086
80 Crotalaria incana L. Fabaceae Gl ZT105
81 Croton macrostachyus Del. Euphorbiaceae Cl Fr Gl Hg Rv ZT141
82 Cyanotis caespitosa Kot1lchy & Peyr. Commelinaceae Gl ZT265
83 Cyathula cylinderica Moq. Amaranthaceae Rv ZT045
84 Cynodon aethiopicus Clayton & Harlan Poaceae Gl ZT039
85 Cynodon dactylon (L.) Pers. Poaceae Gl ZT037
86 Cynodon nlemfuensis Vanderyst Poaceae Gl ZT038
87 Cynoglossum coeruleum Hochst. exA.DC. in DC. Boraginaceae Gl ZT226
88 Cyperus mundtii (Nees) Kunth Cyperaceae Fr ZT041
89 Cyperus triceps Endl Cyperaceae Fr ZT273
90 Dalbergia lactea Vatke Fabaceae Fr ZT143
91 Datura stramonium L. Solanaceae Cl ZT144
92 Desmodium repandum (Vahl) DC. Fabaceae Rv ZT174
93 Dicrocephala integrifolia (L.f) Kuntze Asteraceae Cl Gl ZT175
94 Digitalia ternata (A. Rich.) Staf Poaceae Gl ZT048
95 Digitalia velutina (Forssk.) P.Beauv Poaceae Gl ZT049
96 Dodonaea angustifolia L. f. Sapindaceae Fr ZT063
97 Dolichos sericeus E. Mey. Fabaceae Gl ZT064
98 Dombeya torrida (G.F. Gmel.) P. Bamps Sterculiaceae Fr ZT065
99 Dovyalis abyssinica (A. Rich.) Warb. Flacourtiaceae Fr ZT066
100 Dracaena steudneri Engl. Dracaenaceae Fr Rv ZT067
101 Dregea schimperi (Decne.) Bullock Asclepiadaceae Gl ZT068
102 Drynaria volkensii Hieron. Polypodiaceae Fr ZT070
103 Echinops giganteus A. Rich. Asteraceae Gl ZT160
104 Echinops macrochaetus Fresen. Asteraceae Gl ZT161
105 Ehretia cymosa Thonn. Boraginaceae Cl Hg Rv ZT162
106 Ekebergia capensis Sparrm. Meliaceae Cl Fr Gl Hg Rv ZT171
107 Eleusine floccifolia (Forssk.) Spreng. Poaceae Gl ZT072
108 Embelia schimperi Vatke Myrsinaceae Rv ZT157
109 Englerina woodfordioides (Schweinf.)M. Gilbert Loranthaceae Cl Fr Gl Hg Rv ZT087
110 Ensete ventricosum (Welw.) Cheesman Musaceae Hg ZT088
111 Erythrina brucei Schweinf. Fabaceae Fr Gl Hg Rv ZT100
112 Erythrococca abyssinica Pax Euphorbiaceae Gl ZT061
113 Eucalyptus camaldulensis Dehnh. Myrtaceae Cl Hg ZT082
114 Eucalyptus globulus (F.Muell.) J.B.Kirkp. Mytaceae Cl Hg ZT112
115 Euphorbia ampliphylla Pax Euphorbiaceae Fr Hg Rv ZT115
116 Euphorbia buchananii Pax Euphorbiaceae Hg ZT116
117 Euphorbia cotinifolia L. Euphorbiaceae Hg ZT117
118 Ficus mucuso Ficalho. Moraceae Rv ZT225
119 Ficus sur Forssk. Moraceae Cl Fr Gl Hg Rv ZT269
120 Ficus thonningii Blume Moraceae Cl Gl Hg Rv ZT270
121 Ficus vasta Forssk. Moraceae Cl ZT005
122 Flacourtia indica (Burm.f.) Merr Flacourtiaceae Fr Rv ZT008
123 Foeniculum vulgare Miller Apiaceae Cl ZT013
124 Galinsoga parviflora Cav. Asteraceae Gl ZT033
125 Galinsoga quadriradiata Ruiz & Pavon Asteraceae Gl ZT036
126 Galium spurium L. Runiaceae Gl ZT080
127 Gardenia ternifolia Schumach. &Thonn. Rubiaceae Cl ZT081
128 Geranium arabicum Forssk. Geranaceae Gl ZT090
129 Girardinia bullosa (Steudel) Wedd. Urticaceae Gl ZT092
130 Girardinia diversifolia (Link) Friis Urticaceae Gl ZT097
131 Gnaphalium rubriflorum Hilliard Asteraceae Fr ZT111
132 Gnidia glauca (Fresen.) Gilg Thymelaeaceae Fr ZT152
133 Gradiolus muriclae Kelway Iridaceaea Gl ZT167
134 Grevillea robusta A. Cunn. ex R. Br. Gravelliaceae Hg ZT178
135 Grewia ferruginea Hochst.ex A. Rich. Tiliaceae Cl Fr Gl Hg ZT220
136 Guizotia scabra (Vis.) Chiov. Asteraceae Gl ZT244
137 Guizotia schimperi Sch. Bip. ex Walp. Asteraceae Gl ZT245
138 Hagenia abyssinica (Broce) I.F. Gmel. Rosaceae Cl ZT246
139 Haplocarpha schimperi (Sch. Rip.) Beauv. Asteraceae Cl ZT247
140 Helinus mystacinus (Ait.) E. Mey. ex Steud. Rhamnaceae Rv ZT272
141 Heliotropium zeylanicum (Burm f.) Lam. Boraginaceae Cl ZT275
142 Hibiscus vitifolius L. Malvaceae Rv ZT099
143 Hippocratea africana (Willd.) Loes. Celastraceae Rv ZT122
144 Hippocratea goetezi Loes. Celastraceae Cl ZT128
145 Hygrophila schulli (Hamilt.) M.R. & S.M Acanthaceae Cl Gl ZT198
146 Hyparrhenia anthistirioides (Hochst. ex A. Rich) Poaceae Rv ZT134
147 Hypericum quartinianum A. Rich. Guttiferae Fr Gl ZT147
148 Hypoestes forskaolii (Vahl) R. Br. Acanthaceae Fr ZT219
149 Hypoestes triflora (Forssk.) Roem & Schult. Acanthaceae Rv ZT017
150 Impatiens hocshtetteri Warb. Balsaminaceae Fr ZT133
151 Impatiens rothii Hook. F Balsaminaceae Fr ZT060
152 Indigofera arrecta Hochst. exA. Rich. Fabaceae Rv ZT154
153 Inula confertiflora A.Rich. Asteraceae Gl ZT168
154 Isodon schimperi (Vatke) J.K. Morton Lamiaceae Gl ZT169
155 Jacaranda mimosifolia D. Don Bignonaceae Hg ZT185
156 Jasminum abyssinicum Hochst. ex DC. Oleaceae Rv ZT186
157 Juniperus procera Hochst. ex Endl. Cupressaceae Hg ZT214
158 Justicia diclipteroide Lindau Acanthaceae Rv ZT215
159 Justicia schimperiana (Hochst. ex Nees) T. Acanthaceae Gl Hg ZT237
160 Kalanchoe densiflora Rolfe Crassulaceae Gl ZT256
161 Kalanchoe petitiana A. Rich. Crassulaceae Gl ZT238
162 Lagenaria abyssinica (Hookf.) C. Jeffrey Cucurbitaceae Gl Rv ZT205
163 Laggera crispata (Vahl) Hepper & Wood Asteraceae Gl ZT031
164 Lantana camara L. Verbenaceae Hg ZT032
165 Launaea cornuta (Hochst. ex Oliv. & Hiem) C. Jeffrey Asteraceae Gl ZT184
166 Lepidotrichilia volkensii (Gilrke) Leroy Meliaceae Fr ZT109
167 Leucaena leucocephala (Lam.] De Wit Fabaceae Gl Hg ZT207
168 Leucas deflexa Hook.f. Lamiaceae Gl ZT266
169 Leucas martinicensis (Jacq.) R. Br. Lamiaceae Gl ZT010
170 Lippia adoensis Hochst. ex Walp Verbenaceae Gl ZT142
171 Luffa cylinderica (L.)M J. Roem Cucurbitaceae Hg ZT196
172 Maesa lanceolata Forssk. Myrsinaceae Cl Fr Gl Hg Rv ZT197
173 Mangifera indica L. Anacardiaceae Hg ZT248
174 Maytenus arbutifolia (A.Rich.) Wilczek Celastraceae Cl Fr Gl ZT106
175 Maytenus gracilipes (Welw. ex Oliv.) Exell Celastraceae Cl Fr Gl Rv ZT166
176 Melia azederach L. Meliaceae Hg ZT025
177 Mikaniopsis clematoides (Sch. Bip. ex A. Rich.) Asteraceae Gl ZT261
178 Millettia ferruginea (Hochst.) Bak. Fabaceae Fr Rv ZT118
179 Morus alba L. Rosaceae Hg ZT119
180 Musa paradisiaca L. Musaceae Hg ZT120
181 Myrica salicifolia A.Rich. Myricaceae Fr Gl Hg ZT121
182 Nicandra physaloide (L.) Gaertn. Solanaceae Cl Fr ZT110
183 Nicotiana tabacum L. Solanaceae Hg ZT180
184 Nuxia congesta R.Br. ex Fresen. Loganiaceae Fr Gl ZT181
185 Ocimum lamiifolium Hochst. ex. Benth. Lamiaceae Fr ZT108
186 Ocimum urticifolium Roth. Lamiaceae Gl ZT172
187 Oenanthe procumbens (Wolff) Norman Apiaceae Cl Rv ZT034
188 Olea capensis subspecies macrocarpa (C.H. Wright) Verdc. Oleaceae Fr ZT035
189 Olea europaea subspecies cuspidata (Wall.ex G.Don) Cif. Oleaceae Cl Gl Hg ZT113
190 Olinia rochetiana A.Juss. Oliniaceae Cl ZT263
191 Oplismenus hirtellus (L.) P. Beauv. Poaceae Gl Rv ZT114
192 Orobanchae minor Smit Orobanchaceae Gl Hg ZT029
193 Osyris quadripartita Decne Santalaceae Fr ZT050
194 Panicum monticola Hook.f. Poaceae Fr ZT156
195 Pavetta abyssinica Fresen. Rubiaceae Fr ZT188
196 Pavonia burchellii (DC.) Dyer Malvaceae Fr ZT189
197 Pavonia urens Cav. Malvaceae Hg Rv ZT242
198 Pelargonium multibracteatum Hochst. exA. Rich. Geraniaceae Hg ZT190
199 Pennisetum clandestinum Chiov. Poaceae Gl ZT232
200 Pennisetum schimperi A. Rich. Poaceae Gl ZT233
201 Pennisetum sphacelatum (Nees) Th. Dur. Poaceae Gl ZT271
202 Pennisetum thunbergii Kunth Poaceae Gl ZT192
203 Periploca linearifolia Quart.-Dill. & A. Rich. Asclepiadaceae Fr ZT211
204 Persicaria decipiens (R. Br.) K.L. Wilson Polygonaceae Cl Hg ZT209
205 Persea americana Mill. Lauraceae Hg ZT212
206 Phoenix reclinata Jacq. Arecaceae Rv ZT213
207 Phragmanthera macrosolen (A. Rich.] M. Gilbert Loranthaceae Cl ZT015
208 Physalis peruviana L. Solanaceae Gl ZT020
209 Phytolacca dodecandra L'Herit. Phytolaccaceae Hg Rv ZT021
210 Pimpinella oreophila Hook. J Apiaceae Rv ZT083
211 Pinus radiata D. Don Pinaceae Hg ZT084
212 Pittosporum viridiflorum Sims Pittosporaceae Cl Gl Rv ZT085
213 Plantago lanceolata L. Plantaginaceae Cl ZT094
214 Platostoma roundifolia (Briq.) AJ. Paton Lamiaceae Rv ZT095
215 Plectranthus punctatus (L.f.) L'H'er. Lamiaceae Rv ZT107
216 Podocarpus falcatus (Thunb.) R.B. ex. Mirb. Podocarpaceae Cl Fr Gl Hg Rv ZT146
217 Pouteria adolfi-friederici (Engl.) Baehni Sapotaceae Rv ZT191
218 Prunus africana (Hook.f.) Kalkm. Rosaceae Cl Fr Gl Hg Rv ZT194
219 Pteridium aqulinium (L.) Kuhn Hypolepidaceae Rv ZT199
220 Pterolobium stellantum (Forssk.) Brenan Fabaceae Fr Gl ZT200
221 Rhamnus prinoides L'Herit. Rhamnaceae Hg Rv ZT201
222 Rhiocissus tridentata (L. f.) Wild & Drummond Vitaceae Gl Rv ZT202
223 Rhus glutinosa A.Rich. Anacardiaceae Fr ZT249
224 Rhus natalensis Krauss Anacardiaceae Fr ZT260
225 Ricinus communis L. Euphorbiaceae Hg ZT216
226 Ritchiea albersi Gilg Capparidaceae Cl Gl ZT203
227 Rosa abyssinica Lindley Rosaceae Fr Gl ZT234
228 Rothmannia urcelliformis (Hiem) Robyns Rubiaceae Rv ZT102
229 Rubia cordifolia L. Rubiaceae Rv ZT014
230 Rubus apetalus Poir. Rosaceae Gl Rv ZT058
231 Rubus steudneri Schweinf. Rosaceae Gl Rv ZT046
232 Rumex abyssinica Jacq. Polygonaceae Rv ZT140
233 Rumex nepalensis Spreng. Polygonaceae Gl ZT221
234 Rumex nervosus Vahl Polygonaceae Gl ZT243
235 Rytigynia neglecta (Hiern) Robyns Rubiaceae Fr Gl Rv ZT044
236 Salix mucronata Thunb. (S. subserrata Willd) Salicaceae Hg Rv ZT138
237 Salvia nilotica Jacq. Lamiaceae Gl ZT179
238 Satureja paradoxa (Vatke) Engl. ex Seybold Lamiaceae Gl ZT218
239 Scadoxus multiflorus (Martyn) Raf'. Amaryllidaceae Gl Rv ZT227
240 Schefflera abyssinica (Hochst. ex A. Rich.) Araliaceae Cl Fr Hg ZT230
241 Schinus molle L. Anacardiaceae Hg ZT231
242 Schrebera alata (Hochst.) Welw. Oleaceae Gl ZT062
243 Scutia myrtina (Burm. f.) Kurz Rhamnaceae Rv ZT127
244 Senna didymobotrya (Fresen.) Irwin& Bameby Fabaceae Gl ZT195
245 Senna petersiana (Bolle) Lock Fabaceae Hg Rv ZT228
246 Senna septemterioles (Viv.) Irwin & Bameby Fabaceae Hg ZT229
247 Sesbania sesban (L) Merr Fabaceae Hg ZT235
248 Sida rhombifolia L. Malvaceae Gl ZT276
249 Snowdenia polystachya (Fresen.) Pilg. Poaceae Hg ZT126
250 Solanecio gigas Boulos ex Humbert Asteraceae Gl ZT059
251 Solanum aculeatissom Jacq. Solanaceae Gl ZT043
252 Solanum anguivi Lam. Solanaceae Cl Fr Gl Hg Rv ZT054
253 Solanum marginatum L.f. Solanaceae Gl ZT055
254 Solanum nigrum L. Solanaceae Gl ZT056
255 Discopodium penninervium Hochst. Solanaceae Gl ZT057
256 Solenostemon autrani (Briq.) J.K. Morton Lamiaceae Cl ZT267
257 Sonchus oleraceus L. Asteraceae Cl ZT277
258 Sonchus schweinfurthii Olivo & Hiem Asteraceae Cl ZT236
259 Spathodea campanulata P. Beauv. Bignoniaceae Hg ZT193
260 Sporobolus africanus (Poir.) Robyns & Tourny Poaceae Cl ZT009
261 Stephania abyssinica (Dillon & A. Rich.) Walp. Menispermaceae Fr ZT096
262 Stereospermum kunthianum Cham. Bignoniaceae Fr ZT217
263 Syzygium guineense (Willd.) DC. Myrtaceae Cl Fr Gl ZT023
264 Tacazzea conferta N.E. Br. Asclepiadaceae Fr ZT278
265 Tagestes minuta L. Asteraceae Fr Gl Rv ZT030
266 Tapinanthus heteromorphus (A. Rich.] Danser Loranthaceae Cl Fr Gl ZT018
267 Teclea nobilis Del. Rutaceae Fr Rv ZT091
268 Torilis arvensis (Hudson) Link Apiaceae Rv ZT182
269 Tragia brevipes Pax Euphorbiaceae Rv ZT183
270 Tragia doryodes AI. Gilbert Euphorbiaceae Fr ZT208
271 Tridactyle filifolia (Schltr.) Schltr Orchidaceae Gl ZT251
272 Trifolium rueppellianum Fresen. Fabaceae Gl ZT252
273 Uebelinia abyssinica Hochst. Caryophyllaceae Hg ZT253
274 Urera hypselodendron (A.Rich) Wedd. Urticaceae Rv ZT254
275 Vachellia abyssinica (Hochst. ex Benth.) Kyal. & Boatwr. Fabaceae Cl Fr Gl Hg Rv ZT255
276 Vangueria apiculata K. Schum. Rubiaceae Rv ZT098
277 Vepris dainellii(Pichi-Serm.) Kokwaro Rutaceae Fr ZT132
278 Verbsacum sinaiticum Benth. Scrophulariaceae Gl ZT135
279 Vernonia amygdalina Del. Asteraceae Cl Fr Gl Hg Rv ZT047
280 Vernonia bipontini Vatke Asteraceae Fr ZT129
281 Vernonia brachycalyx O. Hoffm. Asteraceae Fr ZT130
282 Vernonia hymenolepsi A. Rich. Asteraceae Fr ZT274
283 Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke Asteraceae Fr Gl ZT164
284 Vernonia myriantha Hook.f. Asteraceae Cl Fr Gl Hg Rv ZT170
285 Vernonia thomsoniana Olivo & Hiern ex Oliv. Asteraceae Gl ZT222

References

  • 1.Vieira I.C.G., Toledo P.d., Silva J.d., Higuchi H. Deforestation and threats to the biodiversity of Amazonia. Braz. J. Biol. 2008;68:949–956. doi: 10.1590/s1519-69842008000500004. [DOI] [PubMed] [Google Scholar]
  • 2.Chakravarty S., Ghosh S., Suresh C., Dey A., Shukla G. Deforestation: causes, effects and control strategies. Global perspectives on sustainable forest management. 2012;1:1–26. [Google Scholar]
  • 3.Ray R., Chandran M., Ramachandra T. Biodiversity and ecological assessments of Indian sacred groves. J. For. Res. 2014;25:21–28. [Google Scholar]
  • 4.Fischer J., Lindenmayer D.B. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogeogr. 2007;16:265–280. [Google Scholar]
  • 5.Giam X., Bradshaw C.J., Tan H.T., Sodhi N.S. Future habitat loss and the conservation of plant biodiversity. Biol. Conserv. 2010;143:1594–1602. [Google Scholar]
  • 6.Mantyka‐pringle C.S., Martin T.G., Rhodes J.R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta‐analysis. Global Change Biol. 2012;18:1239–1252. [Google Scholar]
  • 7.Zhumanova M., Mönnig C., Hergarten C., Darr D., Wrage-Mönnig N. Assessment of vegetation degradation in mountainous pastures of the Western Tien-Shan, Kyrgyzstan, using eMODIS NDVI. Ecol. Indicat. 2018;95:527–543. [Google Scholar]
  • 8.Zoungrana B.J., Conrad C., Thiel M., Amekudzi L.K., Da E.D. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. J. Arid Environ. 2018;153:66–75. [Google Scholar]
  • 9.Mengist W., Soromessa T., Feyisa G.L. Landscape change effects on habitat quality in a forest biosphere reserve: implications for the conservation of native habitats. J. Clean. Prod. 2021;329 [Google Scholar]
  • 10.Giam X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA. 2017;114:5775–5777. doi: 10.1073/pnas.1706264114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Decaens T., Martins M.B., Feijoo A., Oszwald J., Dolédec S., Mathieu J., Arnaud de Sartre X., Bonilla D., Brown G.G., Cuellar, Criollo Y.A. Biodiversity loss along a gradient of deforestation in Amazonian agricultural landscapes. Conserv. Biol. 2018;32:1380–1391. doi: 10.1111/cobi.13206. [DOI] [PubMed] [Google Scholar]
  • 12.Acheampong E.O., Macgregor C.J., Sloan S., Sayer J. Deforestation is driven by agricultural expansion in Ghana's forest reserves. Scientific African. 2019;5 [Google Scholar]
  • 13.Daye D.D. Bangor University; United Kingdom: 2012. Fragmented Forests in South-West Ethiopia: Impacts of Land-Use Change on Plant Species Composition and Priorities for Future Conservation. [Google Scholar]
  • 14.Mitiku A.A. University of Pretoria; 2013. Afromontane Avian Assemblages and Land Use in the Bale Mountains of Ethiopia: Patterns, Processes and Conservation Implications. [Google Scholar]
  • 15.Peet R.K., Roberts D.W. Classification of natural and semi-natural vegetation. Vegetation ecology. 2013:28–70. [Google Scholar]
  • 16.Malhi Y., Gardner T.A., Goldsmith G.R., Silman M.R., Zelazowski P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 2014;39:125–159. [Google Scholar]
  • 17.Southworth J., Munroe D., Nagendra H. Land cover change and landscape fragmentation—comparing the utility of continuous and discrete analyses for a western Honduras region. Agric. Ecosyst. Environ. 2004;101:185–205. [Google Scholar]
  • 18.Hartter J., Southworth J. Dwindling resources and fragmentation of landscapes around parks: wetlands and forest patches around Kibale National Park, Uganda. Landsc. Ecol. 2009;24:643–656. [Google Scholar]
  • 19.Adal H., Asfaw Z. 2016. A Pragmatic Comparison of Smallholder Farmers' Perceptions and Attitudes towards Integration of Trees in Farmed Landscapes in North Eastern Ethiopia. [Google Scholar]
  • 20.Lindenmayer D.B., Franklin J.F. Island press; 2002. Conserving Forest Biodiversity: a Comprehensive Multiscaled Approach. [Google Scholar]
  • 21.Angelstam P., Bergman P. Assessing actual landscapes for the maintenance of forest biodiversity: a pilot study using forest management data. Ecol. Bull. 2004:413–425. [Google Scholar]
  • 22.Plieninger T., Schleyer C., Mantel M., Hostert P. Is there a forest transition outside forests? Trajectories of farm trees and effects on ecosystem services in an agricultural landscape in Eastern Germany. Land Use Pol. 2012;29:233–243. [Google Scholar]
  • 23.Keeton W.S., Crow S.M. Ecological Economics and Sustainable Forest Management: Developing a Trans-disciplinary Approach for the Carpathian Mountains. 2009. Sustainable forest management alternatives for the Carpathian Mountain region: providing a broad array of ecosystem services; pp. 109–126. [Google Scholar]
  • 24.Sharpe D., Guntenspergen G., Dunn C., Leitner L., Stearns F. Landscape Heterogeneity and Disturbance. Springer; 1987. Vegetation dynamics in a southern Wisconsin agricultural landscape; pp. 137–155. [Google Scholar]
  • 25.Lameire S., Hermy M., Honnay O. Two decades of change in the ground vegetation of a mixed deciduous forest in an agricultural landscape. J. Veg. Sci. 2000;11:695–704. [Google Scholar]
  • 26.Anderson M.C., Norman J.M., Kustas W.P., Li F., Prueger J.H., Mecikalski J.R. Effects of vegetation clumping on two–source model estimates of surface energy fluxes from an agricultural landscape during SMACEX. J. Hydrometeorol. 2005;6:892–909. [Google Scholar]
  • 27.Bishaw B. Deforestation and land degradation in the Ethiopian highlands: a strategy for physical recovery. NE Afr. Stud. 2001:7–25. [Google Scholar]
  • 28.Chimdesa G. The political economy of deforestation and forest degradation in Ethiopia. J. Resour. Dev. Manag. 2017;29:38–43. [Google Scholar]
  • 29.Getahun K., Poesen J., Van Rompaey A. Impacts of resettlement programs on deforestation of moist evergreen Afromontane forests in Southwest Ethiopia. Mt. Res. Dev. 2017;37:474–486. [Google Scholar]
  • 30.Abera A., Yirgu T., Uncha A. Impact of resettlement scheme on vegetation cover and its implications on conservation in Chewaka district of Ethiopia. Environmental Systems Research. 2020;9:1–17. [Google Scholar]
  • 31.Fetene A., Bekele T., Lemenih M. Diversity of Non-timber forest products (NTFPs) and their source species in Menagesha Suba Forest. Ethiop. J. Biol. Sci. 2010;9:11–34. [Google Scholar]
  • 32.Woldegeorgis G., Wube T. A survey on mammals of the Yayu forest in Southwest Ethiopia. Sinet. 2012;35:135–138. [Google Scholar]
  • 33.Tesfaye M.A., Gardi O., Bekele T., Blaser J. Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: the case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia. Journal of Ecology and Environment. 2019;43:1–22. [Google Scholar]
  • 34.Engdawork A. CASCAPE–Addis Ababa University; 2015. Characterization and Classification of the Major Agricultural Soils in Cascape Intervention Woredas in the Central Highlands of Oromia Region. [Google Scholar]
  • 35.Sieben E.J., Khubeka S.P., Sithole S., Job N.M., Kotze D.C. The classification of wetlands: integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manag. 2018;26:441–458. [Google Scholar]
  • 36.Edosa T.T., Kebede T., Shumeta Z. Analysis of price efficiency of smallholder farmers in maize production in Gudeya Bila district, Oromia national regional state, Ethiopia: stochastic, dual cost approach. International Journal of Contemporary Research and Review. 2019;10:21480–21487. [Google Scholar]
  • 37.Friis I., Demissew S., Van Breugel P. Atlas of the potential vegetation of Ethiopia, Det Kongelige Danske Videnskabernes. Selskab. 2010:307. [Google Scholar]
  • 38.Kelbessa E., Soromessa T. Interfaces of regeneration, structure, diversity and uses of some plant species in Bonga Forest: a reservoir for wild coffee gene pool. Sinet. 2008;31:121–134. [Google Scholar]
  • 39.Kremer A., Ronce O., Robledo‐Arnuncio J.J., Guillaume F., Bohrer G., Nathan R., Bridle J.R., Gomulkiewicz R., Klein E.K., Ritland K. Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012;15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Trinh L.N., Watson J.W., Hue N.N., De N.N., Minh N., Chu P., Sthapit B.R., Eyzaguirre P.B. Agrobiodiversity conservation and development in Vietnamese home gardens. Agric. Ecosyst. Environ. 2003;97:317–344. [Google Scholar]
  • 41.Weiner C.N., Werner M., Linsenmair K.E., Blüthgen N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 2011;12:292–299. [Google Scholar]
  • 42.Gallardo-Cruz J.A., Pérez-García E.A., Meave J.A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc. Ecol. 2009;24:473–482. [Google Scholar]
  • 43.Danquah J.A., Pappinen A. Analyses of socioeconomic factors influencing on-farm conservation of remnant forest tree species: evidence from Ghana. Journal of Economics and Behavioral Studies. 2013;5:588–602. [Google Scholar]
  • 44.Dastidar D.G., Basu S., Venkatraman C., Chaudhuri P., Raj P.N. Remnant vegetation in farmland-its significance in ethnobotany and local ecosystem. Plant Science Today. 2022;9(4):900–908. [Google Scholar]
  • 45.Baiamonte G., Domina G., Raimondo F., Bazan G. Agricultural landscapes and biodiversity conservation: a case study in Sicily (Italy) Biodivers. Conserv. 2015;24:3201–3216. [Google Scholar]
  • 46.Duflot R., Aviron S., Ernoult A., Fahrig L., Burel F. Reconsidering the role of ‘semi-natural habitat’in agricultural landscape biodiversity: a case study. Ecol. Res. 2015;30:75–83. [Google Scholar]
  • 47.Rendón-Carmona H., Martínez-Yrízar A., Balvanera P., Pérez-Salicrup D. Selective cutting of woody species in a Mexican tropical dry forest: incompatibility between use and conservation. For. Ecol. Manag. 2009;257:567–579. [Google Scholar]
  • 48.Paillet Y., Bergès L., Hjältén J., Ódor P., Avon C., Bernhardt‐Römermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U. Biodiversity differences between managed and unmanaged forests: meta‐analysis of species richness in Europe. Conserv. Biol. 2010;24:101–112. doi: 10.1111/j.1523-1739.2009.01399.x. [DOI] [PubMed] [Google Scholar]
  • 49.Birhanu L., Bekele T., Demissew S. Woody species composition and structure of Amoro forest in west Gojjam zone, north western Ethiopia. J. Ecol. Nat. Environ. 2018;10:53–64. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data used in the study will be made available on request from the corresponding author.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES