Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771

Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat.

M J Holness 1, Y L Liu 1, M C Sugden 1
PMCID: PMC1133652  PMID: 2619715

Abstract

In the fed state, the percentages of the pyruvate dehydrogenase complex (PDH) in the active form (PDHa) in diaphragm and a selection of skeletal muscles (adductor longus, soleus, extensor digitorum longus, tibialis anterior, gastrocnemius) ranged from 8% (soleus) to 38% (gastrocnemius). Major decreases in PDHa activities in all of these muscles were observed after 15 h of starvation, by which time activities were less than 40% of the fed values. In general, the response to starvation was observed more rapidly in muscles of high oxidative capacity. The patterns of changes in skeletal-muscle PDH activities during the fed-to-starved transition are discussed in relation to changes in lipid-fuel supply and oxidation.

Full text

PDF
771

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  2. Berger M., Hagg S. A., Goodman M. N., Ruderman N. B. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem J. 1976 Aug 15;158(2):191–202. doi: 10.1042/bj1580191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denyer G. S., Lam D., Cooney G. J., Caterson I. D. Effect of starvation and insulin in vivo on the activity of the pyruvate dehydrogenase complex in rat skeletal muscles. FEBS Lett. 1989 Jul 3;250(2):464–468. doi: 10.1016/0014-5793(89)80777-x. [DOI] [PubMed] [Google Scholar]
  5. French T. J., Holness M. J., MacLennan P. A., Sugden M. C. Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal-muscle fructose 2,6-bisphosphate concentrations. Biochem J. 1988 Mar 15;250(3):773–779. doi: 10.1042/bj2500773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuller S. J., Randle P. J. Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal-muscle mitochondria. Effects of starvation and diabetes. Biochem J. 1984 Apr 15;219(2):635–646. doi: 10.1042/bj2190635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman M. N., Berger M., Ruderman N. B. Glucose metabolism in rat skeletal muscle at rest. Effect of starvation, diabetes, ketone bodies and free fatty acids. Diabetes. 1974 Nov;23(11):881–888. doi: 10.2337/diab.23.11.881. [DOI] [PubMed] [Google Scholar]
  8. Hagg S. A., Taylor S. I., Ruberman N. B. Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise. Biochem J. 1976 Aug 15;158(2):203–210. doi: 10.1042/bj1580203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hennig G., Löffler G., Wieland O. H. Active and inactive forms of pyruvatedehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Lett. 1975 Nov 15;59(2):142–145. doi: 10.1016/0014-5793(75)80361-9. [DOI] [PubMed] [Google Scholar]
  10. Holness M. J., French T. J., Sugden M. C. Hepatic glycogen synthesis on carbohydrate re-feeding after starvation. A regulatory role for pyruvate dehydrogenase in liver and extrahepatic tissues. Biochem J. 1986 Apr 15;235(2):441–445. doi: 10.1042/bj2350441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holness M. J., MacLennan P. A., Palmer T. N., Sugden M. C. The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J. 1988 Jun 1;252(2):325–330. doi: 10.1042/bj2520325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holness M. J., Sugden M. C. Pyruvate dehydrogenase activities during the fed-to-starved transition and on re-feeding after acute or prolonged starvation. Biochem J. 1989 Mar 1;258(2):529–533. doi: 10.1042/bj2580529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Issad T., Pénicaud L., Ferré P., Kandé J., Baudon M. A., Girard J. Effects of fasting on tissue glucose utilization in conscious resting rats. Major glucose-sparing effect in working muscles. Biochem J. 1987 Aug 15;246(1):241–244. doi: 10.1042/bj2460241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jefferson L. S., Koehler J. O., Morgan H. E. Effect of insulin on protein synthesis in skeletal muscle of an isolated perfused preparation of rat hemicorpus. Proc Natl Acad Sci U S A. 1972 Apr;69(4):816–820. doi: 10.1073/pnas.69.4.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kruszynska Y. T., McCormack J. G. Effect of nutritional status on insulin sensitivity in vivo and tissue enzyme activities in the rat. Biochem J. 1989 Mar 15;258(3):699–707. doi: 10.1042/bj2580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuwajima M., Foster D. W., McGarry J. D. Regulation of lipoprotein lipase in different rat tissues. Metabolism. 1988 Jun;37(6):597–601. doi: 10.1016/0026-0495(88)90178-3. [DOI] [PubMed] [Google Scholar]
  18. Maizels E. Z., Ruderman N. B., Goodman M. N., Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977 Mar 15;162(3):557–568. doi: 10.1042/bj1620557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pénicaud L., Ferré P., Kande J., Leturque A., Issad T., Girard J. Effect of anesthesia on glucose production and utilization in rats. Am J Physiol. 1987 Mar;252(3 Pt 1):E365–E369. doi: 10.1152/ajpendo.1987.252.3.E365. [DOI] [PubMed] [Google Scholar]
  20. Randle P. J. Fuel selection in animals. Biochem Soc Trans. 1986 Oct;14(5):799–806. doi: 10.1042/bst0140799. [DOI] [PubMed] [Google Scholar]
  21. Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rennie M. J., Holloszy J. O. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well-oxygenated perfused skeletal muscle. Biochem J. 1977 Nov 15;168(2):161–170. doi: 10.1042/bj1680161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rennie M. J., Winder W. W., Holloszy J. O. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976 Jun 15;156(3):647–655. doi: 10.1042/bj1560647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sale G. J., Randle P. J. Occupancy of phosphorylation sites in pyruvate dehydrogenase phosphate complex in rat heart in vivo. Relation to proportion of inactive complex and rate of re-activation by phosphatase. Biochem J. 1982 Aug 15;206(2):221–229. doi: 10.1042/bj2060221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schade D. S., Eaton R. P. The regulation of plasma ketone body concentration by counter-regulatory hormones in man. III. Effects of norepinephrine in normal man. Diabetes. 1979 Jan;28(1):5–10. doi: 10.2337/diab.28.1.5. [DOI] [PubMed] [Google Scholar]
  26. Schofield P. S., French T. J., Goode A. W., Sugden M. C. Liver carnitine metabolism after partial hepatectomy in the rat. Effects of nutritional status and inhibition of carnitine palmitoyltransferase. FEBS Lett. 1985 May 20;184(2):214–220. doi: 10.1016/0014-5793(85)80609-8. [DOI] [PubMed] [Google Scholar]
  27. Sugden M. C., Holness M. J. Effects of re-feeding after prolonged starvation on pyruvate dehydrogenase activities in heart, diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Sep 1;262(2):669–672. doi: 10.1042/bj2620669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zorzano A., Balon T. W., Brady L. J., Rivera P., Garetto L. P., Young J. C., Goodman M. N., Ruderman N. B. Effects of starvation and exercise on concentrations of citrate, hexose phosphates and glycogen in skeletal muscle and heart. Evidence for selective operation of the glucose-fatty acid cycle. Biochem J. 1985 Dec 1;232(2):585–591. doi: 10.1042/bj2320585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES