Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 15;264(3):885–892. doi: 10.1042/bj2640885

Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.

J H Charuk 1, S Howlett 1, M Michalak 1
PMCID: PMC1133668  PMID: 2559722

Abstract

The properties of highly purified bovine cardiac sarcolemma subfractionated with the lectin, wheat-germ agglutinin (WGA) were studied. Two different membrane subfractions were isolated, one which was agglutinated in the presence of 1.0 mg of WGA/mg of protein (WGA+ vesicles) and a second fraction which failed to agglutinate (WGA- vesicles). These two membrane fractions had quantitatively different rates of Na+/K+-dependent, ouabain-sensitive ATPase and Na+/Ca2+ exchange activities, yet a similar protein composition, which suggests that they were both derived from the plasma membrane. WGA- vesicles had a decreased number of [3H]quinuclidinyl benzilate-binding sites and no detectable [3H]nitrendipine-binding sites. Electron-microscopic and freeze-fracture analysis showed that the WGA+ fraction was composed of typical spherical sarcolemmal vesicles, whereas the WGA- fraction primarily contained elongated tubular structures suggestive of the T-tubule vesicles which were previously isolated from skeletal muscle. Assays of marker enzymes revealed that these fractions were neither sarcoplasmic reticulum nor plasma membrane from endothelial cells. Moreover, WGA agglutination did not result in the separation of right-side-out and inside-out vesicles. On the basis of these findings we propose that the WGA+ fraction corresponds to highly purified sarcolemma, whereas the WGA- fraction may be derived from T-tubule membranes.

Full text

PDF
885

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt N. Identification of two populations of cardiac microsomes with nitrendipine receptors: correlation of the distribution of dihydropyridine receptors with organelle specific markers. Arch Biochem Biophys. 1985 Oct;242(1):306–319. doi: 10.1016/0003-9861(85)90506-5. [DOI] [PubMed] [Google Scholar]
  2. Brunschwig J. P., Brandt N., Caswell A. H., Lukeman D. S. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting. J Cell Biol. 1982 Jun;93(3):533–542. doi: 10.1083/jcb.93.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell K. P., MacLennan D. H., Jorgensen A. O. Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye "Stains-all". J Biol Chem. 1983 Sep 25;258(18):11267–11273. [PubMed] [Google Scholar]
  4. Caroni P., Carafoli E. Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation Process. J Biol Chem. 1981 Sep 25;256(18):9371–9373. [PubMed] [Google Scholar]
  5. Caroni P., Carafoli E. The regulation of the Na+ -Ca2+ exchanger of heart sarcolemma. Eur J Biochem. 1983 May 16;132(3):451–460. doi: 10.1111/j.1432-1033.1983.tb07383.x. [DOI] [PubMed] [Google Scholar]
  6. Caswell A. H., Brandt N. R., Brunschwig J. P., Kawamoto R. M. Isolation of transverse tubule membranes from skeletal muscle: ion transport activity, reformation of triad junctions, and isolation of junctional spanning protein of triads. Methods Enzymol. 1988;157:68–84. doi: 10.1016/0076-6879(88)57069-6. [DOI] [PubMed] [Google Scholar]
  7. Cooper C. L., Vandaele S., Barhanin J., Fosset M., Lazdunski M., Hosey M. M. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. J Biol Chem. 1987 Jan 15;262(2):509–512. [PubMed] [Google Scholar]
  8. Doyle D. D., Kamp T. J., Palfrey H. C., Miller R. J., Page E. Separation of cardiac plasmalemma into cell surface and T-tubular components. Distribution of saxitoxin- and nitrendipine-binding sites. J Biol Chem. 1986 May 15;261(14):6556–6563. [PubMed] [Google Scholar]
  9. Fosset M., Jaimovich E., Delpont E., Lazdunski M. [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983 May 25;258(10):6086–6092. [PubMed] [Google Scholar]
  10. Hawkes R. Identification of concanavalin A-binding proteins after sodium dodecyl sulfate--gel electrophoresis and protein blotting. Anal Biochem. 1982 Jun;123(1):143–146. doi: 10.1016/0003-2697(82)90634-0. [DOI] [PubMed] [Google Scholar]
  11. Howlett S. E., Gordon T. Calcium channels in normal and dystrophic hamster cardiac muscle. [3H]nitrendipine binding studies. Biochem Pharmacol. 1987 Aug 15;36(16):2653–2659. doi: 10.1016/0006-2952(87)90547-8. [DOI] [PubMed] [Google Scholar]
  12. Jones L. R., Besch H. R., Jr, Fleming J. W., McConnaughey M. M., Watanabe A. M. Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities. J Biol Chem. 1979 Jan 25;254(2):530–539. [PubMed] [Google Scholar]
  13. Jones L. R., Maddock S. W., Besch H. R., Jr Unmasking effect of alamethicin on the (Na+,K+)-ATPase, beta-adrenergic receptor-coupled adenylate cyclase, and cAMP-dependent protein kinase activities of cardiac sarcolemmal vesicles. J Biol Chem. 1980 Oct 25;255(20):9971–9980. [PubMed] [Google Scholar]
  14. Jones L. R. Rapid preparation of canine cardiac sarcolemmal vesicles by sucrose flotation. Methods Enzymol. 1988;157:85–91. doi: 10.1016/0076-6879(88)57070-2. [DOI] [PubMed] [Google Scholar]
  15. Kirley T. L. Purification and characterization of the Mg2+-ATPase from rabbit skeletal muscle transverse tubule. J Biol Chem. 1988 Sep 5;263(25):12682–12689. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lopaschuk G. D., Michalak M., Wandler E. L., Lerner R. W., Piscione T. D., Coceani F., Olley P. M. Prostaglandin E receptors in cardiac sarcolemma. Identification and coupling to adenylate cyclase. Circ Res. 1989 Sep;65(3):538–545. doi: 10.1161/01.res.65.3.538. [DOI] [PubMed] [Google Scholar]
  18. Manalan A. S., Jones L. R. Characterization of the intrinsic cAMP-dependent protein kinase activity and endogenous substrates in highly purified cardiac sarcolemmal vesicles. J Biol Chem. 1982 Sep 10;257(17):10052–10062. [PubMed] [Google Scholar]
  19. Manalan A. S., Werth D. K., Jones L. R., Watanabe A. M. Enrichment, solubilization, and partial characterization of digitonin-solubilized muscarinic receptors derived from canine ventricular myocardium. Circ Res. 1983 Jun;52(6):664–676. doi: 10.1161/01.res.52.6.664. [DOI] [PubMed] [Google Scholar]
  20. Mansier P., Charlemagne D., Rossi B., Preteseille M., Swynghedauw B., Lelievre L. Isolation of impermeable inside-out vesicles from an enriched sarcolemma fraction of rat heart. J Biol Chem. 1983 May 25;258(10):6628–6635. [PubMed] [Google Scholar]
  21. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  22. Mas-Oliva J., Williams A. J., Nayler W. G. Two orientations of isolated cardiac sarcolemmal vesicles separated by affinity chromatography. Anal Biochem. 1980 Apr;103(2):222–226. doi: 10.1016/0003-2697(80)90259-6. [DOI] [PubMed] [Google Scholar]
  23. Michalak M., Dupraz P., Shoshan-Barmatz V. Ryanodine binding to sarcoplasmic reticulum membrane; comparison between cardiac and skeletal muscle. Biochim Biophys Acta. 1988 Apr 22;939(3):587–594. doi: 10.1016/0005-2736(88)90106-x. [DOI] [PubMed] [Google Scholar]
  24. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  25. Pegg W., Michalak M. Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am J Physiol. 1987 Jan;252(1 Pt 2):H22–H31. doi: 10.1152/ajpheart.1987.252.1.H22. [DOI] [PubMed] [Google Scholar]
  26. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  27. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reinlib L., Caroni P., Carafoli E. Studies on heart sarcolemma: vesicles of opposite orientation and the effect of ATP on the Na+/Ca2+ exchanger. FEBS Lett. 1981 Apr 6;126(1):74–76. doi: 10.1016/0014-5793(81)81036-8. [DOI] [PubMed] [Google Scholar]
  29. Rogers T. B. High affinity angiotensin II receptors in myocardial sarcolemmal membranes. Characterization of receptors and covalent linkage of 125I-angiotensin II to a membrane component of 116,000 daltons. J Biol Chem. 1984 Jul 10;259(13):8106–8114. [PubMed] [Google Scholar]
  30. Scales D. J., Sabbadini R. A. Microsomal T system: a stereological analysis of purified microsomes derived from normal and dystrophic skeletal muscle. J Cell Biol. 1979 Oct;83(1):33–46. doi: 10.1083/jcb.83.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seiler S. M., Cragoe E. J., Jr, Jones L. R. Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles. J Biol Chem. 1985 Apr 25;260(8):4869–4876. [PubMed] [Google Scholar]
  32. Soldati L., Longoni S., Carafoli E. Solubilization and reconstitution of the Na+/Ca2+ exchanger of cardiac sarcolemma. Properties of the reconstituted system and tentative identification of the protein(s) responsible for the exchange activity. J Biol Chem. 1985 Oct 25;260(24):13321–13327. [PubMed] [Google Scholar]
  33. Tomlins B., Harding S. E., Kirby M. S., Poole-Wilson P. A., Williams A. J. Contamination of a cardiac sarcolemmal preparation with endothelial plasma membrane. Biochim Biophys Acta. 1986 Mar 27;856(1):137–143. doi: 10.1016/0005-2736(86)90020-9. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES