Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 15;264(3):909–915. doi: 10.1042/bj2640909

Molecular species composition of the major phospholipids in brain and retina from rainbow trout (Salmo gairdneri). Occurrence of high levels of di-(n-3)polyunsaturated fatty acid species.

M V Bell 1, D R Tocher 1
PMCID: PMC1133671  PMID: 2619717

Abstract

The molecular-species compositions of the diacyl classes of the major phospholipids from the brain and retina of rainbow trout (Salmo gairdneri) were determined. A total of 46 possible species was identified. Didocosahexaenoyl species were major components of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) from retina, comprising 14.1, 41.3 and 28.3% of the respective totals. This species was also abundant in PE and PS from brain, accounting for 14.9 and 19.9% of the totals respectively. Small amounts of di-polyunsaturated fatty acid species [C22:6(n-3) with C20:5(n-3), and C22:6(n-3) with C22:5(n-3)] were also found in these phospholipids. Phosphatidylinositol (PI) from both tissues contained no di-polyunsaturated fatty acid species. Retinal PI contained 40.1% C18:0-C20:4(n-6) with 14.9% of C18:0-C20:5(n-3); brain PI contained 42.3% of C18:0-C20:5 and 10.4% of C18:0-C20:4 species. Brain PC contained a substantial amount of nervonic acid-containing species with the pair C18:1-C24:1/C24:1-C18:1 comprising 8.9% of the total.

Full text

PDF
909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aveldaño M. I., Bazán N. G. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J Lipid Res. 1983 May;24(5):620–627. [PubMed] [Google Scholar]
  2. Blank M. L., Cress E. A., Robinson M., Snyder F. Metabolism of unique diarachidonoyl and linoleoylarachidonoyl species of ethanolamine and choline phosphoglycerides in rat testes. Biochim Biophys Acta. 1985 Mar 6;833(3):366–371. doi: 10.1016/0005-2760(85)90092-x. [DOI] [PubMed] [Google Scholar]
  3. Bourre J. M., Pascal G., Durand G., Masson M., Dumont O., Piciotti M. Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J Neurochem. 1984 Aug;43(2):342–348. doi: 10.1111/j.1471-4159.1984.tb00906.x. [DOI] [PubMed] [Google Scholar]
  4. Connor W. E., Neuringer M., Barstad L., Lin D. S. Dietary deprivation of linolenic acid in rhesus monkeys: effects on plasma and tissue fatty acid composition and on visual function. Trans Assoc Am Physicians. 1984;97:1–9. [PubMed] [Google Scholar]
  5. Coscina D. V., Yehuda S., Dixon L. M., Kish S. J., Leprohon-Greenwood C. E. Learning is improved by a soybean oil diet in rats. Life Sci. 1986 May 12;38(19):1789–1794. doi: 10.1016/0024-3205(86)90130-x. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Henderson R. J., Tocher D. R. The lipid composition and biochemistry of freshwater fish. Prog Lipid Res. 1987;26(4):281–347. doi: 10.1016/0163-7827(87)90002-6. [DOI] [PubMed] [Google Scholar]
  8. Holub B. J., Kuksis A., Thompson W. Molecular species of mono-, di-, and triphosphoinositides of bovine brain. J Lipid Res. 1970 Nov;11(6):558–564. [PubMed] [Google Scholar]
  9. Lamptey M. S., Walker B. L. A possible essential role for dietary linolenic acid in the development of the young rat. J Nutr. 1976 Jan;106(1):86–93. doi: 10.1093/jn/106.1.86. [DOI] [PubMed] [Google Scholar]
  10. Leray C., Pelletier X., Hemmendinger S., Cazenave J. P. Thin-layer chromatography of human platelet phospholipids with fatty acid analysis. J Chromatogr. 1987 Sep 25;420(2):411–416. doi: 10.1016/0378-4347(87)80198-6. [DOI] [PubMed] [Google Scholar]
  11. Louie K., Wiegand R. D., Anderson R. E. Docosahexaenoate-containing molecular species of glycerophospholipids from frog retinal rod outer segments show different rates of biosynthesis and turnover. Biochemistry. 1988 Dec 13;27(25):9014–9020. doi: 10.1021/bi00425a020. [DOI] [PubMed] [Google Scholar]
  12. Miljanich G. P., Sklar L. A., White D. L., Dratz E. A. Disaturated and dipolyunsaturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochim Biophys Acta. 1979 Apr 4;552(2):294–306. doi: 10.1016/0005-2736(79)90284-0. [DOI] [PubMed] [Google Scholar]
  13. Natarajan V., Schmid P. C., Reddy P. V., Zuzarte-Augustin M. L., Schmid H. H. Occurrence of N-acylethanolamine phospholipids in fish brain and spinal cord. Biochim Biophys Acta. 1985 Jul 31;835(3):426–433. doi: 10.1016/0005-2760(85)90111-0. [DOI] [PubMed] [Google Scholar]
  14. Neuringer M., Connor W. E., Lin D. S., Barstad L., Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4021–4025. doi: 10.1073/pnas.83.11.4021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neuringer M., Connor W. E., Van Petten C., Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest. 1984 Jan;73(1):272–276. doi: 10.1172/JCI111202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patton G. M., Fasulo J. M., Robins S. J. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J Lipid Res. 1982 Jan;23(1):190–196. [PubMed] [Google Scholar]
  17. Poulos A., Darin-Bennett A., White I. G. The phospholipid-bound fatty acids and aldehydes of mammalian spermatozoa. Comp Biochem Physiol B. 1973 Nov 15;46(3):541–549. doi: 10.1016/0305-0491(73)90094-1. [DOI] [PubMed] [Google Scholar]
  18. RENKONEN O. INDIVIDUAL MOLECULAR SPECIES OF DIFFERENT PHOSPHOLIPID CLASSES. II. A METHOD OF ANALYSIS. J Am Oil Chem Soc. 1965 Apr;42:298–304. doi: 10.1007/BF02540133. [DOI] [PubMed] [Google Scholar]
  19. Robinson M., Blank M. L., Snyder F. Highly unsaturated phospholipid molecular species of rat erythrocyte membranes: selective incorporation of arachidonic acid into phosphoglycerides containing polyunsaturation in both acyl chains. Arch Biochem Biophys. 1986 Nov 1;250(2):271–279. doi: 10.1016/0003-9861(86)90727-7. [DOI] [PubMed] [Google Scholar]
  20. Rüstow B., Nakagawa Y., Rabe H., Waku K., Kunze D. Species pattern of phosphatidylinositol from lung surfactant and a comparison of the species pattern of phosphatidylinositol and phosphatidylglycerol synthesized de novo in lung microsomal fractions. Biochem J. 1988 Aug 15;254(1):67–71. doi: 10.1042/bj2540067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sastry P. S. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res. 1985;24(2):69–176. doi: 10.1016/0163-7827(85)90011-6. [DOI] [PubMed] [Google Scholar]
  22. Takamura H., Narita H., Urade R., Kito M. Quantitative analysis of polyenoic phospholipid molecular species by high performance liquid chromatography. Lipids. 1986 May;21(5):356–361. doi: 10.1007/BF02535701. [DOI] [PubMed] [Google Scholar]
  23. Tinoco J. Dietary requirements and functions of alpha-linolenic acid in animals. Prog Lipid Res. 1982;21(1):1–45. doi: 10.1016/0163-7827(82)90015-7. [DOI] [PubMed] [Google Scholar]
  24. Vitiello F., Zanetta J. P. Thin-layer chromatography of phospholipids. J Chromatogr. 1978 Dec 11;166(2):637–640. doi: 10.1016/s0021-9673(00)95654-1. [DOI] [PubMed] [Google Scholar]
  25. Wiegand R. D., Anderson R. E. Phospholipid molecular species of frog rod outer segment membranes. Exp Eye Res. 1983 Aug;37(2):159–173. doi: 10.1016/0014-4835(83)90075-1. [DOI] [PubMed] [Google Scholar]
  26. de Caldironi M. I., Bazán N. G. Acyl groups, molecular species, and labeling by 14C-glycerol and 3H-arachidonic acid of vertebrate retina glycerolipids. Adv Exp Med Biol. 1977;83:397–404. doi: 10.1007/978-1-4684-3276-3_37. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES