Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):659–665. doi: 10.1042/bj2650659

Modulation of fibroblast proliferation by oxygen free radicals.

G A Murrell 1, M J Francis 1, L Bromley 1
PMCID: PMC1133685  PMID: 2154966

Abstract

The major unexplained phenomenon in fibrotic conditions is an increase in replicating fibroblasts. In this report we present evidence that oxygen free radicals can both stimulate and inhibit proliferation of cultured human fibroblasts, and that fibroblasts themselves release superoxide (O2.-) free radicals. Fibroblasts released O2.- in concentrations which stimulated proliferation, a finding confirmed by a dose-dependent inhibition of proliferation by free radical scavengers. Oxygen free radicals released by a host of agents may thus provide a very fast, specific and sensitive trigger for fibroblast proliferation. Prolonged stimulation may result in fibrosis, and agents which inhibit free radical release may have a role in the prevention of fibrosis.

Full text

PDF
659

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ager A., Gordon J. L. Differential effects of hydrogen peroxide on indices of endothelial cell function. J Exp Med. 1984 Feb 1;159(2):592–603. doi: 10.1084/jem.159.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ager A., Wenham D. J., Gordon J. L. Stimulation of endothelial cells by protease activity in commercial preparations of xanthine oxidase. Thromb Res. 1984 Jul 1;35(1):43–52. doi: 10.1016/0049-3848(84)90311-6. [DOI] [PubMed] [Google Scholar]
  3. Brickley-Parsons D., Glimcher M. J., Smith R. J., Albin R., Adams J. P. Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren's disease. J Bone Joint Surg Am. 1981 Jun;63(5):787–797. [PubMed] [Google Scholar]
  4. Bruder G., Heid H. W., Jarasch E. D., Mather I. H. Immunological identification and determination of xanthine oxidase in cells and tissues. Differentiation. 1983;23(3):218–225. doi: 10.1111/j.1432-0436.1982.tb01286.x. [DOI] [PubMed] [Google Scholar]
  5. Burkhardt H., Schwingel M., Menninger H., Macartney H. W., Tschesche H. Oxygen radicals as effectors of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arthritis Rheum. 1986 Mar;29(3):379–387. doi: 10.1002/art.1780290311. [DOI] [PubMed] [Google Scholar]
  6. Gabbiani G., Majno G. Dupuytren's contracture: fibroblast contraction? An ultrastructural study. Am J Pathol. 1972 Jan;66(1):131–146. [PMC free article] [PubMed] [Google Scholar]
  7. Greenwald R. A., Moy W. W. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 1980 Apr;23(4):455–463. doi: 10.1002/art.1780230408. [DOI] [PubMed] [Google Scholar]
  8. Jones C. E., Crowell J. W., Smith E. E. Significance of increased blood uric acid following extensive hemorrhage. Am J Physiol. 1968 Jun;214(6):1374–1377. doi: 10.1152/ajplegacy.1968.214.6.1374. [DOI] [PubMed] [Google Scholar]
  9. MACCALLUM P., HUESTON J. T. The pathology of Dupuytren's contracture. Aust N Z J Surg. 1962 May;31:241–253. doi: 10.1111/j.1445-2197.1962.tb03271.x. [DOI] [PubMed] [Google Scholar]
  10. Matsubara T., Ziff M. Superoxide anion release by human endothelial cells: synergism between a phorbol ester and a calcium ionophore. J Cell Physiol. 1986 May;127(2):207–210. doi: 10.1002/jcp.1041270203. [DOI] [PubMed] [Google Scholar]
  11. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  12. McKelvey T. G., Höllwarth M. E., Granger D. N., Engerson T. D., Landler U., Jones H. P. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol. 1988 May;254(5 Pt 1):G753–G760. doi: 10.1152/ajpgi.1988.254.5.G753. [DOI] [PubMed] [Google Scholar]
  13. Meikle M. C., Heath J. K., Hembry R. M., Reynolds J. J. Rabbit cranial suture fibroblasts under tension express a different collagen phenotype. Arch Oral Biol. 1982;27(7):609–613. doi: 10.1016/0003-9969(82)90078-4. [DOI] [PubMed] [Google Scholar]
  14. Mello Filho A. C., Hoffmann M. E., Meneghini R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem J. 1984 Feb 15;218(1):273–275. doi: 10.1042/bj2180273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moorhouse P. C., Grootveld M., Halliwell B., Quinlan J. G., Gutteridge J. M. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett. 1987 Mar 9;213(1):23–28. doi: 10.1016/0014-5793(87)81458-8. [DOI] [PubMed] [Google Scholar]
  16. Murrell G. A., Francis M. J., Bromley L. Free radicals and Dupuytren's contracture. Br Med J (Clin Res Ed) 1987 Nov 28;295(6610):1373–1375. doi: 10.1136/bmj.295.6610.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oreffo R. O., Francis J. A., Triffitt J. T. Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors. Biochem J. 1985 Dec 1;232(2):599–603. doi: 10.1042/bj2320599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parks D. A., Williams T. K., Beckman J. S. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am J Physiol. 1988 May;254(5 Pt 1):G768–G774. doi: 10.1152/ajpgi.1988.254.5.G768. [DOI] [PubMed] [Google Scholar]
  19. Phan S. H., Fantone J. C. Inhibition of bleomycin-induced pulmonary fibrosis by lipopolysaccharide. Lab Invest. 1984 May;50(5):587–591. [PubMed] [Google Scholar]
  20. Puzas J. E., Brand J. S. The effect of bone cell stimulatory factors can be measured with thymidine incorporation only under specific conditions. Calcif Tissue Int. 1986 Aug;39(2):104–108. doi: 10.1007/BF02553298. [DOI] [PubMed] [Google Scholar]
  21. Ratych R. E., Chuknyiska R. S., Bulkley G. B. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery. 1987 Aug;102(2):122–131. [PubMed] [Google Scholar]
  22. Thornalley P., Wolff S., Crabbe J., Stern A. The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta. 1984 Feb 14;797(2):276–287. doi: 10.1016/0304-4165(84)90131-4. [DOI] [PubMed] [Google Scholar]
  23. Tritsch G. L., Niswander P. W. Purine catabolism as a source of superoxide in macrophages. Ann N Y Acad Sci. 1985;451:279–290. doi: 10.1111/j.1749-6632.1985.tb27119.x. [DOI] [PubMed] [Google Scholar]
  24. Wach F., Hein R., Adelmann-Grill B. C., Krieg T. Inhibition of fibroblast chemotaxis by superoxide dismutase. Eur J Cell Biol. 1987 Aug;44(1):124–127. [PubMed] [Google Scholar]
  25. Weening R. S., Wever R., Roos D. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J Lab Clin Med. 1975 Feb;85(2):245–252. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES