Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):667–674. doi: 10.1042/bj2650667

Complete dissociation of gonadotropin receptor binding and signal transduction in mouse Leydig tumour cells. Obligatory role of glycosylation in hormone action.

M R Sairam 1
PMCID: PMC1133686  PMID: 2306206

Abstract

Utilizing a clonal cell line of mouse testicular Leydig cells (MA-10 cells) the complete steroidogenic and other hormonal properties of chemically deglycosylated ovine lutropin (DG-LH) and human choriogonadotropin (DG-hCG) were evaluated. In these cells, with the LH receptor-steroidogenic mechanism tightly coupled and in which there are few, if any, spare receptors, both DG-LH and DG-hCG failed to elicit progesterone production, unlike fully glycosylated native LH and hCG. The receptor-binding activity of DG-LH and DG-hCG was 2-3 times that of LH and hCG in competition experiments with radiolabelled hormones. The typical phenomenon of rounding of MA-10 cells induced by LH and hCG was absent when cells were incubated with DG-LH or DG-hCG. This could be directly attributable to their failure to produce cyclic AMP as second messenger. DG-LH and DG-hCG inhibited cell shape changes and steroidogenesis caused by LH and hCG. The deglycosylated hormones were potent antagonists of the action of glycosylated hormones. Delaying DG-hCG (antagonist) addition for up to 1 h after initiation of hCG action was also very effective in preventing further activation of steroidogenesis. Similar effects were produced by addition of affinity-purified anti-hCG antibodies. In affinity cross-linking experiments, both hCG and DG-hCG bound to the same 90 kDa receptor. Studies with MA-10 cells thus provide unequivocal evidence that the presence of antennary sugars in LH and hCG (and perhaps in other similar hormones such as follicle-stimulating hormone and thyroid-stimulating hormone), is essential for signal transduction. Differences observed in the literature in other cellular systems may be attributed to differences in hormone-receptor-effector coupling.

Full text

PDF
667

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981 Jan;108(1):88–95. doi: 10.1210/endo-108-1-88. [DOI] [PubMed] [Google Scholar]
  2. Ascoli M., Pignataro O. P., Segaloff D. L. The inositol phosphate/diacylglycerol pathway in MA-10 Leydig tumor cells. Activation by arginine vasopressin and lack of effect of epidermal growth factor and human choriogonadotropin. J Biol Chem. 1989 Apr 25;264(12):6674–6681. [PubMed] [Google Scholar]
  3. Ascoli M., Segaloff D. L. Effects of collagenase on the structure of the lutropin/choriogonadotropin receptor. J Biol Chem. 1986 Mar 15;261(8):3807–3815. [PubMed] [Google Scholar]
  4. Calvo F. O., Keutmann H. T., Bergert E. R., Ryan R. J. Deglycosylated human follitropin: characterization and effects on adenosine cyclic 3',5'-phosphate production in porcine granulosa cells. Biochemistry. 1986 Jul 1;25(13):3938–3943. doi: 10.1021/bi00361a030. [DOI] [PubMed] [Google Scholar]
  5. Channing C. P., Bahl O. P. Role of carbohydrate residues of human chorionic gonadotropin in stimulation of progesterone secretion by cultures of monkey granulosa cells. Biol Reprod. 1978 Jun;18(5):707–711. doi: 10.1095/biolreprod18.5.707. [DOI] [PubMed] [Google Scholar]
  6. Chen H. C., Shimohigashi Y., Dufau M. L., Catt K. J. Characterization and biological properties of chemically deglycosylated human chorionic gonadotropin. Role of carbohydrate moieties in adenylate cyclase activation. J Biol Chem. 1982 Dec 10;257(23):14446–14452. [PubMed] [Google Scholar]
  7. Chu F. K., Maley F., Tarentino A. L. The use of iodinated lectins for determining the degree of deglycosylation of high-mannose glycoproteins by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1981 Sep 1;116(1):152–160. doi: 10.1016/0003-2697(81)90338-9. [DOI] [PubMed] [Google Scholar]
  8. Cole L. A., Metsch L. A., Grotjan H. E., Jr Significant steroidogenic activity of luteinizing hormone is maintained after enzymatic removal of oligosaccharides. Mol Endocrinol. 1987 Sep;1(9):621–627. doi: 10.1210/mend-1-9-621. [DOI] [PubMed] [Google Scholar]
  9. Cooke B. A., Magee-Brown R., Golding M., Dix C. J. The heterogeneity of Leydig cells from mouse and rat testes--evidence for a Leydig cell cycle? Int J Androl. 1981 Jun;4(3):355–366. doi: 10.1111/j.1365-2605.1981.tb00719.x. [DOI] [PubMed] [Google Scholar]
  10. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goverman J. M., Parsons T. F., Pierce J. G. Enzymatic deglycosylation of the subunits of chorionic gonadotropin. Effects on formation of tertiary structure and biological activity. J Biol Chem. 1982 Dec 25;257(24):15059–15064. [PubMed] [Google Scholar]
  12. Hattori M., Hachisu T., Shimohigashi Y., Wakabayashi K. Conformation of the beta subunit of deglycosylated human chorionic gonadotropin in the interaction at receptor sites. Mol Cell Endocrinol. 1988 May;57(1-2):17–23. doi: 10.1016/0303-7207(88)90027-5. [DOI] [PubMed] [Google Scholar]
  13. Kalyan N. K., Bahl O. P. Role of carbohydrate in human chorionic gonadotropin. Effect of deglycosylation on the subunit interaction and on its in vitro and in vivo biological properties. J Biol Chem. 1983 Jan 10;258(1):67–74. [PubMed] [Google Scholar]
  14. Keutmann H. T., McIlroy P. J., Bergert E. R., Ryan R. J. Chemically deglycosylated human chorionic gonadotropin subunits: characterization and biological properties. Biochemistry. 1983 Jun 21;22(13):3067–3072. doi: 10.1021/bi00282a007. [DOI] [PubMed] [Google Scholar]
  15. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  16. Liu L., Southers J. L., Banks S. M., Blithe D. L., Wehmann R. E., Brown J. H., Chen H. C., Nisula B. C. Stimulation of testosterone production in the cynomolgus monkey in vivo by deglycosylated and desialylated human choriogonadotropin. Endocrinology. 1989 Jan;124(1):175–180. doi: 10.1210/endo-124-1-175. [DOI] [PubMed] [Google Scholar]
  17. Liu W. K., Young J. D., Ward D. N. Deglycosylated ovine lutropin: preparation and characterization by in vitro binding and steroidogenesis. Mol Cell Endocrinol. 1984 Aug;37(1):29–39. doi: 10.1016/0303-7207(84)90125-4. [DOI] [PubMed] [Google Scholar]
  18. Manjunath P., Sairam M. R. Biochemical, biological, and immunological properties of chemically deglycosylated human choriogonadotropin. J Biol Chem. 1982 Jun 25;257(12):7109–7115. [PubMed] [Google Scholar]
  19. Manjunath P., Sairam M. R., Schiller P. W. Chemical deglycosylation of ovine pituitary lutropin. A study of the reaction conditions and effects on biochemical, biophysical and biological properties of the hormone. Biochem J. 1982 Oct 1;207(1):11–19. doi: 10.1042/bj2070011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matzuk M. M., Keene J. L., Boime I. Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem. 1989 Feb 15;264(5):2409–2414. [PubMed] [Google Scholar]
  21. Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
  22. Miura Y., Perkel V. S., Magner J. A. Differential susceptibility to N-glycanase at the individual glycosylation sites of mouse thyrotropin and free alpha-subunits. Endocrinology. 1988 Nov;123(5):2207–2213. doi: 10.1210/endo-123-5-2207. [DOI] [PubMed] [Google Scholar]
  23. Moyle W. R., Bahl O. P., März L. Role of carbohydrate of human chorionic gonadotropin in the mechanism of hormone action. J Biol Chem. 1975 Dec 10;250(23):9163–9169. [PubMed] [Google Scholar]
  24. Moyle W. R., Moudgal N. R., Greep R. O. Cessation of steroidogenesis in Leydig cell tumors after removal of luteinizing hormone and adenosine cyclic 3',5'-monophosphate. J Biol Chem. 1971 Aug 25;246(16):4978–4982. [PubMed] [Google Scholar]
  25. Niswender G. D., Schwall R. H., Fitz T. A., Farin C. E., Sawyer H. R. Regulation of luteal function in domestic ruminants: new concepts. Recent Prog Horm Res. 1985;41:101–151. doi: 10.1016/b978-0-12-571141-8.50007-x. [DOI] [PubMed] [Google Scholar]
  26. Pierce J. G., Parsons T. F. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341. [DOI] [PubMed] [Google Scholar]
  27. Pilch P. F., Czech M. P. Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. J Biol Chem. 1979 May 10;254(9):3375–3381. [PubMed] [Google Scholar]
  28. Rebois R. V., Fishman P. H. Deglycosylated human chorionic gonadotropin. An antagonist to desensitization and down-regulation of the gonadotropin receptor-adenylate cyclase system. J Biol Chem. 1983 Nov 10;258(21):12775–12778. [PubMed] [Google Scholar]
  29. Rebois R. V., Liss M. T. Antibody binding to the beta-subunit of deglycosylated chorionic gonadotropin converts the antagonist to an agonist. J Biol Chem. 1987 Mar 15;262(8):3891–3896. [PubMed] [Google Scholar]
  30. Richardson M. C., Masson G. M., Sairam M. R. Inhibitory action of chemically deglycosylated human chorionic gonadotrophin on hormone-induced steroid production by dispersed cells from human corpus luteum. J Endocrinol. 1984 Jun;101(3):327–332. doi: 10.1677/joe.0.1010327. [DOI] [PubMed] [Google Scholar]
  31. Ronin C., Papandreou M. J., Canonne C., Weintraub B. D. Carbohydrate chains of human thyrotropin are differentially susceptible to endoglycosidase removal on combined and free polypeptide subunits. Biochemistry. 1987 Sep 8;26(18):5848–5853. doi: 10.1021/bi00392a040. [DOI] [PubMed] [Google Scholar]
  32. Ryan R. J., Keutmann H. T., Charlesworth M. C., McCormick D. J., Milius R. P., Calvo F. O., Vutyavanich T. Structure-function relationships of gonadotropins. Recent Prog Horm Res. 1987;43:383–429. [PubMed] [Google Scholar]
  33. Sairam M. R., Bhargavi G. N. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones. Science. 1985 Jul 5;229(4708):65–67. doi: 10.1126/science.2990039. [DOI] [PubMed] [Google Scholar]
  34. Sairam M. R. Effects of carbohydrate removal on the structure and activity of bovine lutropin. Biochim Biophys Acta. 1982 Jul 16;717(1):149–153. doi: 10.1016/0304-4165(82)90392-0. [DOI] [PubMed] [Google Scholar]
  35. Sairam M. R., Kato K., Mukhopadhyay A. K., Bohnet H. G. Preparation and properties of human chorionic gonadotropin antagonist for biological studies: antifertility effects in the female rat. Acta Endocrinol (Copenh) 1986 Aug;112(4):586–594. doi: 10.1530/acta.0.1120586. [DOI] [PubMed] [Google Scholar]
  36. Sairam M. R., Manjunath P. Studies on pituitary follitropin. XI. Induction of hormonal antagonistic activity by chemical deglycosylation. Mol Cell Endocrinol. 1982 Oct;28(2):139–150. doi: 10.1016/0303-7207(82)90027-2. [DOI] [PubMed] [Google Scholar]
  37. Sairam M. R. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 1989 Jun;3(8):1915–1926. doi: 10.1096/fasebj.3.8.2542111. [DOI] [PubMed] [Google Scholar]
  38. Segaloff D. L., Ascoli M. Removal of the surface-bound human choriogonadotropin results in the cessation of hormonal responses in cultured Leydig tumor cells. J Biol Chem. 1981 Nov 25;256(22):11420–11423. [PubMed] [Google Scholar]
  39. Singh V., Sairam M. R. Hormonotoxins. I. Strategy for synthesis of ovine luteinizing hormone--gelonin conjugate bearing the toxin in the beta-subunit. Int J Pept Protein Res. 1989 Jan;33(1):22–28. doi: 10.1111/j.1399-3011.1989.tb00679.x. [DOI] [PubMed] [Google Scholar]
  40. Swedlow J. R., Matteri R. L., Papkoff H. Deglycosylation of gonadotropins with an endoglycosidase. Proc Soc Exp Biol Med. 1986 Mar;181(3):432–437. doi: 10.3181/00379727-181-42277. [DOI] [PubMed] [Google Scholar]
  41. Themmen A. P., Hoogerbrugge J. W., Rommerts F. F., van der Molen H. J. Is cAMP the obligatory second messenger in the action of lutropin on Leydig cell steroidogenesis. Biochem Biophys Res Commun. 1985 May 16;128(3):1164–1172. doi: 10.1016/0006-291x(85)91063-0. [DOI] [PubMed] [Google Scholar]
  42. Van Damme M. P., Robertson D. M., Diczfalusy E. An improved in vitro bioassay method for measuring luteinizing hormone (LH) activity using mouse Leydig cell preparations. Acta Endocrinol (Copenh) 1974 Dec;77(4):655–671. doi: 10.1530/acta.0.0770655. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES