Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):725–729. doi: 10.1042/bj2650725

The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase.

M J Warren 1, C A Roessner 1, P J Santander 1, A I Scott 1
PMCID: PMC1133693  PMID: 2407234

Abstract

The Escherichia coli cysG gene was successfully subcloned and over-expressed to produce a 52 kDa protein that was purified to homogeneity. This protein was shown to catalyse the S-adenosylmethionine-dependent methylation of uroporphyrinogen III to give a product identified as sirohydrochlorin on the basis of its absorption spectra, incorporation of 14C label from S-adenosyl[Me-14C]methionine and mass and 1H-n.m.r. spectra of its octamethyl ester. Further confirmation of the structure was obtained from a 14C-n.m.r. spectrum of the methyl ester produced by incubation of the methylase with uroporphyrinogen III, derived from [4.6-13C2]porphobilinogen, and S-adenosyl[Me-13C]methionine.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole J. A., Newman B. M., White P. Biochemical and genetic characterization of nirB mutants of Escherichia coli K 12 pleiotropically defective in nitrite and sulphite reduction. J Gen Microbiol. 1980 Oct;120(2):475–483. doi: 10.1099/00221287-120-2-475. [DOI] [PubMed] [Google Scholar]
  2. Deeg R., Kriemler H. P., Bergmann K. H., Müller G. Zur Cobyrinsäure-Biosynthese. Neuartige, methylierte Hydroporphyrine und deren Bedeutung bei der Cobyrinsäure-Bildung. Hoppe Seylers Z Physiol Chem. 1977 Mar;358(3):339–352. [PubMed] [Google Scholar]
  3. Jeter R. M., Olivera B. M., Roth J. R. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. doi: 10.1128/jb.159.1.206-213.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jordan P. M., Berry A. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem J. 1981 Apr 1;195(1):177–181. doi: 10.1042/bj1950177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  6. Macdonald H., Cole J. Molecular cloning and functional analysis of the cysG and nirB genes of Escherichia coli K12, two closely-linked genes required for NADH-dependent nitrite reductase activity. Mol Gen Genet. 1985;200(2):328–334. doi: 10.1007/BF00425444. [DOI] [PubMed] [Google Scholar]
  7. Murphy M. J., Siegel L. M., Kamin H., Rosenthal D. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. II. Identification of a new class of heme prosthetic group: an iron-tetrahydroporphyrin (isobacteriochlorin type) with eight carboxylic acid groups. J Biol Chem. 1973 Apr 25;248(8):2801–2814. [PubMed] [Google Scholar]
  8. Scott A. I., Roessner C. A., Stolowich N. J., Karuso P., Williams H. J., Grant S. K., Gonzalez M. D., Hoshino T. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase. Biochemistry. 1988 Oct 18;27(21):7984–7990. doi: 10.1021/bi00421a002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES