Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):755–762. doi: 10.1042/bj2650755

Subcellular distribution of alpha 2-adrenergic receptors, pertussis-toxin substrate and adenylate cyclase in human platelets.

M A Zamorski 1, J C Ferraro 1, R R Neubig 1
PMCID: PMC1133698  PMID: 2154968

Abstract

The subcellular distribution of the alpha 2-adrenergic receptor, pertussis-toxin substrates (Gi, the inhibitory G-protein) and adenylate cyclase was determined in human platelets. The alpha 2-adrenergic receptor and pertussis-toxin substrate activity codistribute with surface membranes identified by a novel fluorescent-lectin method. The platelet granule fractions did not contain detectable Gi. Only 2-4% of the total pertussis-toxin substrate activity appears in soluble fractions, and this amount was not increased upon addition of purified beta gamma units or after pretreatment of platelets with adrenaline. There is no evidence for compartmentation of the alpha 2-adrenergic receptor or Gi to account for the low-affinity component of agonist binding to the alpha 2-adrenergic receptor in human platelet membranes. Translocation of Gi from plasma membrane to platelet cytosol or granules does not appear to play any significant role in the mechanism of alpha 2-receptor-mediated platelet activation.

Full text

PDF
755

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baehr W., Morita E. A., Swanson R. J., Applebury M. L. Characterization of bovine rod outer segment G-protein. J Biol Chem. 1982 Jun 10;257(11):6452–6460. [PubMed] [Google Scholar]
  2. Banga H. S., Walker R. K., Winberry L. K., Rittenhouse S. E. Platelet adenylate cyclase and phospholipase C are affected differentially by ADP-ribosylation. Effects on thrombin-mediated responses. Biochem J. 1988 May 15;252(1):297–300. doi: 10.1042/bj2520297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beals C. R., Wilson C. B., Perlmutter R. M. A small multigene family encodes Gi signal-transduction proteins. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7886–7890. doi: 10.1073/pnas.84.22.7886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bokoch G. M., Bickford K., Bohl B. P. Subcellular localization and quantitation of the major neutrophil pertussis toxin substrate, Gn. J Cell Biol. 1988 Jun;106(6):1927–1936. doi: 10.1083/jcb.106.6.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bokoch G. M., Katada T., Northup J. K., Ui M., Gilman A. G. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J Biol Chem. 1984 Mar 25;259(6):3560–3567. [PubMed] [Google Scholar]
  6. Buss J. E., Mumby S. M., Casey P. J., Gilman A. G., Sefton B. M. Myristoylated alpha subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7493–7497. doi: 10.1073/pnas.84.21.7493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlson K. E., Woolkalis M. J., Newhouse M. G., Manning D. R. Fractionation of the beta subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Mol Pharmacol. 1986 Nov;30(5):463–468. [PubMed] [Google Scholar]
  8. Chabre M. Trigger and amplification mechanisms in visual phototransduction. Annu Rev Biophys Biophys Chem. 1985;14:331–360. doi: 10.1146/annurev.bb.14.060185.001555. [DOI] [PubMed] [Google Scholar]
  9. Convents A., De Backer J. P., Convents D., Vauquelin G. Tight agonist binding may prevent the correct interpretation of agonist competition binding curves for alpha 2-adrenergic receptors. Mol Pharmacol. 1987 Jul;32(1):65–72. [PubMed] [Google Scholar]
  10. Crouch M. F., Winegar D. A., Lapetina E. G. Epinephrine induces changes in the subcellular distribution of the inhibitory GTP-binding protein Gi alpha-2 and a 38-kDa phosphorylated protein in the human platelet. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1776–1780. doi: 10.1073/pnas.86.6.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cutler L. S., Christian C. P., Feinstein M. B. Cytochemical localization of adenylate cyclase in the dense tubule system of human blood platelets stimulated by forskolin, prostacyclin and prostaglandin D2. Biochim Biophys Acta. 1985 Jun 30;845(3):403–410. doi: 10.1016/0167-4889(85)90205-8. [DOI] [PubMed] [Google Scholar]
  12. Cutler L. S., Feinstein M. B., Rodan G. A., Christian C. P. Cytochemical evidence for the segregation of adenylate cyclase, Ca2+-, Mg2+-ATPase, K+-dependent p-nitrophenyl phosphatase in separate membrane compartments in human platelets. Histochem J. 1981 Jul;13(4):547–554. doi: 10.1007/BF01002710. [DOI] [PubMed] [Google Scholar]
  13. Day H. J., Holmsen H., Hovig T. Subcellular particles of human platelets. A biochemical and electron microscopic study with particular reference to the influence of fractionation techniques. Scand J Haematol Suppl. 1969;7:3–35. [PubMed] [Google Scholar]
  14. Deckmyn H., Tu S. M., Majerus P. W. Guanine nucleotides stimulate soluble phosphoinositide-specific phospholipase C in the absence of membranes. J Biol Chem. 1986 Dec 15;261(35):16553–16558. [PubMed] [Google Scholar]
  15. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  16. Fain J. N., Wallace M. A., Wojcikiewicz R. J. Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J. 1988 Jul;2(10):2569–2574. doi: 10.1096/fasebj.2.10.2838362. [DOI] [PubMed] [Google Scholar]
  17. Fauvel J., Chap H., Roques V., Levy-Toledano S., Douste-Blazy L. Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients. Biochim Biophys Acta. 1986 Mar 27;856(1):155–164. doi: 10.1016/0005-2736(86)90022-2. [DOI] [PubMed] [Google Scholar]
  18. García-Sáinz J. A. 'Inhibitory' receptors and ion channel effectors. Trends Pharmacol Sci. 1988 Aug;9(8):271–272. doi: 10.1016/0165-6147(88)90002-8. [DOI] [PubMed] [Google Scholar]
  19. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  20. Halenda S. P., Volpi M., Zavoico G. B., Sha'afi R. I., Feinstein M. B. Effects of thrombin, phorbol myristate acetate and prostaglandin D2 on 40-41 kDa protein that is ADP ribosylated by pertussis toxin in platelets. FEBS Lett. 1986 Aug 18;204(2):341–346. doi: 10.1016/0014-5793(86)80840-7. [DOI] [PubMed] [Google Scholar]
  21. Harden T. K., Cotton C. U., Waldo G. L., Lutton J. K., Perkins J. P. Catecholamine-induced alteration in sedimentation behavior of membrane bound beta-adrenergic receptors. Science. 1980 Oct;210(4468):441–443. doi: 10.1126/science.6254143. [DOI] [PubMed] [Google Scholar]
  22. Hoffman B. B., Michel T., Brenneman T. B., Lefkowitz R. J. Interactions of agonists with platelet alpha 2-adrenergic receptors. Endocrinology. 1982 Mar;110(3):926–932. doi: 10.1210/endo-110-3-926. [DOI] [PubMed] [Google Scholar]
  23. Hoffman B. B., Michel T., Kilpatrick D. M., Lefkowitz R. J., Tolbert M. E., Gilman H., Fain J. N. Agonist versus antagonist binding to alpha-adrenergic receptors. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4569–4573. doi: 10.1073/pnas.77.8.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jakobs K. H., Saur W., Schultz G. Characterization of alpha- and beta-adrenergic receptors linked to human platelet adenylate cyclase. Naunyn Schmiedebergs Arch Pharmacol. 1978 May;302(3):285–291. doi: 10.1007/BF00508297. [DOI] [PubMed] [Google Scholar]
  25. Jesaitis A. J., Bokoch G. M., Tolley J. O., Allen R. A. Lateral segregation of neutrophil chemotactic receptors into actin- and fodrin-rich plasma membrane microdomains depleted in guanyl nucleotide regulatory proteins. J Cell Biol. 1988 Sep;107(3):921–928. doi: 10.1083/jcb.107.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kim M. H., Neubig R. R. Membrane reconstitution of high-affinity alpha 2 adrenergic agonist binding with guanine nucleotide regulatory proteins. Biochemistry. 1987 Jun 16;26(12):3664–3672. doi: 10.1021/bi00386a061. [DOI] [PubMed] [Google Scholar]
  27. Kim M. H., Neubig R. R. Parallel inactivation of alpha 2-adrenergic agonist binding and Ni by alkaline treatment. FEBS Lett. 1985 Nov 18;192(2):321–325. doi: 10.1016/0014-5793(85)80134-4. [DOI] [PubMed] [Google Scholar]
  28. Kurose H., Katada T., Amano T., Ui M. Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via alpha-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem. 1983 Apr 25;258(8):4870–4875. [PubMed] [Google Scholar]
  29. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  30. Lapetina E. G., Reep B., Chang K. J. Treatment of human platelets with trypsin, thrombin, or collagen inhibits the pertussis toxin-induced ADP-ribosylation of a 41-kDa protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5880–5883. doi: 10.1073/pnas.83.16.5880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
  32. Lynch C. J., Morbach L., Blackmore P. F., Exton J. H. Alpha-subunits of Ns are released from the plasma membrane following cholera toxin activation. FEBS Lett. 1986 May 12;200(2):333–336. doi: 10.1016/0014-5793(86)81163-2. [DOI] [PubMed] [Google Scholar]
  33. Menashi S., Weintroub H., Crawford N. Characterization of human platelet surface and intracellular membranes isolated by free flow electrophoresis. J Biol Chem. 1981 Apr 25;256(8):4095–4101. [PubMed] [Google Scholar]
  34. Molina Y Vedia L., Lapetina E. G. Iloprost-induced translocation of a 23-kDa protein that is recognized by a Gs alpha antiserum. Proc Natl Acad Sci U S A. 1989 Feb;86(3):868–870. doi: 10.1073/pnas.86.3.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Motulsky H. J., Shattil S. J., Ferry N., Rozansky D., Insel P. A. Desensitization of epinephrine-initiated platelet aggregation does not alter binding to the alpha 2-adrenergic receptor or receptor coupling to adenylate cyclase. Mol Pharmacol. 1986 Jan;29(1):1–6. [PubMed] [Google Scholar]
  36. Mumby S., Pang I. H., Gilman A. G., Sternweis P. C. Chromatographic resolution and immunologic identification of the alpha 40 and alpha 41 subunits of guanine nucleotide-binding regulatory proteins from bovine brain. J Biol Chem. 1988 Feb 5;263(4):2020–2026. [PubMed] [Google Scholar]
  37. Nagata K., Katada T., Tohkin M., Itoh H., Kaziro Y., Ui M., Nozawa Y. GTP-binding proteins in human platelet membranes serving as the specific substrate of islet-activating protein, pertussis toxin. FEBS Lett. 1988 Sep 12;237(1-2):113–117. doi: 10.1016/0014-5793(88)80182-0. [DOI] [PubMed] [Google Scholar]
  38. Neer E. J., Lok J. M., Wolf L. G. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem. 1984 Nov 25;259(22):14222–14229. [PubMed] [Google Scholar]
  39. Neubig R. R., Gantzos R. D., Brasier R. S. Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry. Mol Pharmacol. 1985 Nov;28(5):475–486. [PubMed] [Google Scholar]
  40. Neubig R. R., Gantzos R. D., Thomsen W. J. Mechanism of agonist and antagonist binding to alpha 2 adrenergic receptors: evidence for a precoupled receptor-guanine nucleotide protein complex. Biochemistry. 1988 Apr 5;27(7):2374–2384. doi: 10.1021/bi00407a019. [DOI] [PubMed] [Google Scholar]
  41. Neubig R. R., Szamraj O. Large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets. Persistent association of guanine nucleotides with nonpurified membranes. Biochim Biophys Acta. 1986 Jan 16;854(1):67–76. doi: 10.1016/0005-2736(86)90065-9. [DOI] [PubMed] [Google Scholar]
  42. Rotrosen D., Gallin J. I., Spiegel A. M., Malech H. L. Subcellular localization of Gi alpha in human neutrophils. J Biol Chem. 1988 Aug 5;263(22):10958–10964. [PubMed] [Google Scholar]
  43. Stadel J. M., Strulovici B., Nambi P., Lavin T. N., Briggs M. M., Caron M. G., Lefkowitz R. J. Desensitization of the beta-adrenergic receptor of frog erythrocytes. Recovery and characterization of the down-regulated receptors in sequestered vesicles. J Biol Chem. 1983 Mar 10;258(5):3032–3038. [PubMed] [Google Scholar]
  44. Steer M. L., Wood A. Regulation of human platelet adenylate cyclase by epinephrine, prostaglandin E1, and guanine nucleotides. Evidence for separate guanine nucleotide sites mediating stimulation and inhibition. J Biol Chem. 1979 Nov 10;254(21):10791–10797. [PubMed] [Google Scholar]
  45. Thomsen W. J., Jacquez J. A., Neubig R. R. Inhibition of adenylate cyclase is mediated by the high affinity conformation of the alpha 2-adrenergic receptor. Mol Pharmacol. 1988 Dec;34(6):814–822. [PubMed] [Google Scholar]
  46. Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
  47. WURTMAN R. J., AXELROD J. A SENSITIVE AND SPECIFIC ASSAY FOR THE ESTIMATION OF MONOAMINE OXIDASE. Biochem Pharmacol. 1963 Dec;12:1439–1441. doi: 10.1016/0006-2952(63)90215-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES