Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 1;265(3):777–787. doi: 10.1042/bj2650777

Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion.

P Thams 1, K Capito 1, C J Hedeskov 1, H Kofod 1
PMCID: PMC1133701  PMID: 2407236

Abstract

The influence of down-regulation of protein kinase C on glucose-induced insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 0.16 microM) in RPMI 1640 culture medium (8.3 mM-glucose, 0.43 mM-Ca2+) abolished TPA (0.16 microM)-induced insulin secretion and led to a potentiation of phase 1 and a decrease in phase 2 of glucose-induced insulin secretion. Thus, although the total insulin release during 40 min of perfusion with glucose (16.7 mM) (45-85 min) was unaffected, the percentage released during phase 1 (45-55 min) was increased from 12.9 +/- 1.5 (4)% in controls to 35.8 +/- 3.9 (4)% in TPA-treated islets (P less than 0.01), and the percentage released during phase 2 (65-85 min) was decreased from 63.2 +/- 3.9 (4)% to 35.3 +/- 1.4 (4)% (P less than 0.005). In contrast, TPA exposure in TCM 199 medium (5.5 mM-glucose, 1.26 mM-Ca2+) caused a total abolition of both phases 1 and 2 of glucose-induced secretion. However, inclusion of the alpha 2-adrenergic agonists adrenaline (10 microM) or clonidine (10 microM), or lowering of the Ca2+ concentration in TCM 199 during down-regulation, preserved and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1 and inhibited phase 2 of carbamoylcholine (100 microM)-induced insulin secretion at 3.3 mM-glucose, and abolished the potentiating effect of carbamoylcholine (100 microM) at 16.7 mM-glucose. These results substantiate a role for protein kinase C in insulin secretion, and suggest that protein kinase C inhibits phase 1 and stimulates phase 2 of both glucose-induced and carbamoylcholine-induced insulin secretion.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkhammar P., Nilsson T., Berggren P. O. Stimulation of insulin release by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate in the clonal cell line RINm5F despite a lowering of the free cytoplasmic Ca2+ concentration. Biochim Biophys Acta. 1986 Jul 11;887(2):236–241. doi: 10.1016/0167-4889(86)90060-1. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Best L. A role for calcium in the breakdown of inositol phospholipids in intact and digitonin-permeabilized pancreatic islets. Biochem J. 1986 Sep 15;238(3):773–779. doi: 10.1042/bj2380773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chertow B. S., Buschmann R. J., Kaplan R. L. Cellular mechanisms of insulin release. Effects of retinol on insulin release and islet ultrastructure. Diabetes. 1979 Aug;28(8):754–761. doi: 10.2337/diab.28.8.754. [DOI] [PubMed] [Google Scholar]
  5. Connolly T. M., Lawing W. J., Jr, Majerus P. W. Protein kinase C phosphorylates human platelet inositol trisphosphate 5'-phosphomonoesterase, increasing the phosphatase activity. Cell. 1986 Sep 12;46(6):951–958. doi: 10.1016/0092-8674(86)90077-2. [DOI] [PubMed] [Google Scholar]
  6. Dunlop M. E., Larkins R. G. Glucose-induced phospholipid-dependent protein phosphorylation in neonatal rat islets. Arch Biochem Biophys. 1986 Aug 1;248(2):562–569. doi: 10.1016/0003-9861(86)90509-6. [DOI] [PubMed] [Google Scholar]
  7. Henquin J. C., Bozem M., Schmeer W., Nenquin M. Distinct mechanisms for two amplification systems of insulin release. Biochem J. 1987 Sep 1;246(2):393–399. doi: 10.1042/bj2460393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henquin J. C. The interplay between cyclic AMP and ions in the stimulus-secretion coupling in pancreatic B-cells. Arch Int Physiol Biochim. 1985 May;93(1):37–48. doi: 10.3109/13813458509104514. [DOI] [PubMed] [Google Scholar]
  9. Hii C. S., Jones P. M., Persaud S. J., Howell S. L. A re-assessment of the role of protein kinase C in glucose-stimulated insulin secretion. Biochem J. 1987 Sep 1;246(2):489–493. doi: 10.1042/bj2460489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hii C. S., Stutchfield J., Howell S. L. Enhancement of glucagon secretion from isolated rat islets of Langerhans by phorbol 12-myristate 13-acetate. Biochem J. 1986 Jan 1;233(1):287–289. doi: 10.1042/bj2330287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hughes S. J., Ashcroft S. J. Effects of a phorbol ester and clomiphene on protein phosphorylation and insulin secretion in rat pancreatic islets. Biochem J. 1988 Feb 1;249(3):825–830. doi: 10.1042/bj2490825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughes S. J., Christie M. R., Ashcroft S. J. Potentiators of insulin secretion modulate Ca2+ sensitivity in rat pancreatic islets. Mol Cell Endocrinol. 1987 Apr;50(3):231–236. doi: 10.1016/0303-7207(87)90021-9. [DOI] [PubMed] [Google Scholar]
  13. Jones P. M., Fyles J. M., Persaud S. J., Howell S. L. Catecholamine inhibition of Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans. FEBS Lett. 1987 Jul 13;219(1):139–144. doi: 10.1016/0014-5793(87)81206-1. [DOI] [PubMed] [Google Scholar]
  14. Knudsen P., Kofod H., Lernmark A., Hedeskov C. J. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase. Am J Physiol. 1983 Oct;245(4):E338–E346. doi: 10.1152/ajpendo.1983.245.4.E338. [DOI] [PubMed] [Google Scholar]
  15. Laychock S. G. Alpha 2-adrenoceptor stimulation affects total glucose utilization in isolated islets of Langerhans. Mol Pharmacol. 1987 Aug;32(1):241–248. [PubMed] [Google Scholar]
  16. Malaisse W. J., Sener A., Herchuelz A., Carpinelli A. R., Poloczek P., Winand J., Castagna M. Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res. 1980 Oct;40(10):3827–3831. [PubMed] [Google Scholar]
  17. Metz S. A. Perspectives in diabetes. Is protein kinase C required for physiologic insulin release? Diabetes. 1988 Jan;37(1):3–7. doi: 10.2337/diab.37.1.3. [DOI] [PubMed] [Google Scholar]
  18. Monaco M. E., Levy B. L., Richardson S. B. Synergism between vasopressin and phorbol esters in stimulation of insulin secretion and phosphatidylcholine metabolism in RIN insulinoma cells. Biochem Biophys Res Commun. 1988 Mar 15;151(2):717–724. doi: 10.1016/s0006-291x(88)80339-5. [DOI] [PubMed] [Google Scholar]
  19. Montague W., Morgan N. G., Rumford G. M., Prince C. A. Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans. Biochem J. 1985 Apr 15;227(2):483–489. doi: 10.1042/bj2270483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morgan N. G., Rumford G. M., Montague W. Mechanisms involved in intracellular calcium mobilization in isolated rat islets of Langerhans. Biochem J. 1987 Jun 15;244(3):669–674. doi: 10.1042/bj2440669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  22. Peter-Riesch B., Fathi M., Schlegel W., Wollheim C. B. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest. 1988 Apr;81(4):1154–1161. doi: 10.1172/JCI113430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  24. Schuit F. C., Pipeleers D. G. Differences in adrenergic recognition by pancreatic A and B cells. Science. 1986 May 16;232(4752):875–877. doi: 10.1126/science.2871625. [DOI] [PubMed] [Google Scholar]
  25. Smallwood J. I., Gügi B., Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem. 1988 Feb 15;263(5):2195–2202. [PubMed] [Google Scholar]
  26. Taffet S. M., Greenfield A. R., Haddox M. K. Retinal inhibits TPA activated, calcium-dependent, phospholipid-dependent protein kinase ("C" kinase). Biochem Biophys Res Commun. 1983 Aug 12;114(3):1194–1199. doi: 10.1016/0006-291x(83)90689-7. [DOI] [PubMed] [Google Scholar]
  27. Tamagawa T., Niki H., Niki A. Insulin release independent of a rise in cytosolic free Ca2+ by forskolin and phorbol ester. FEBS Lett. 1985 Apr 22;183(2):430–432. doi: 10.1016/0014-5793(85)80825-5. [DOI] [PubMed] [Google Scholar]
  28. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  29. Thams P., Capito K., Hedeskov C. J. Stimulation by glucose of cyclic AMP accumulation in mouse pancreatic islets is mediated by protein kinase C. Biochem J. 1988 Jul 1;253(1):229–234. doi: 10.1042/bj2530229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trimble E. R., Renold A. E. Ventral and dorsal areas of rat pancreas: islet hormone content and secretion. Am J Physiol. 1981 Apr;240(4):E422–E427. doi: 10.1152/ajpendo.1981.240.4.E422. [DOI] [PubMed] [Google Scholar]
  31. Trus M. D., Hintz C. S., Weinstein J. B., Williams A. D., Pagliara A. S., Matschinsky F. M. A comparison of the effects of glucose and acetylcholine on insulin release and intermediary metabolism in rat pancreatic islets. J Biol Chem. 1979 May 25;254(10):3921–3929. [PubMed] [Google Scholar]
  32. Ullrich S., Wollheim C. B. GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. Lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem. 1988 Jun 25;263(18):8615–8620. [PubMed] [Google Scholar]
  33. Wolf B. A., Turk J., Sherman W. R., McDaniel M. L. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem. 1986 Mar 15;261(8):3501–3511. [PubMed] [Google Scholar]
  34. Wollheim C. B., Kikuchi M., Renold A. E., Sharp G. W. Somatostatin- and epinephrine-induced modifications of 45Ca++ fluxes and insulin release in rat pancreatic islets maintained in tissue culture. J Clin Invest. 1977 Nov;60(5):1165–1173. doi: 10.1172/JCI108869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yamazaki S., Katada T., Ui M. Alpha 2-adrenergic inhibition of insulin secretion via interference with cyclic AMP generation in rat pancreatic islets. Mol Pharmacol. 1982 May;21(3):648–653. [PubMed] [Google Scholar]
  36. Zawalich W. S., Zawalich K. C. Phosphoinositide hydrolysis and insulin release from isolated perifused rat islets. Studies with glucose. Diabetes. 1988 Sep;37(9):1294–1300. doi: 10.2337/diab.37.9.1294. [DOI] [PubMed] [Google Scholar]
  37. Zawalich W., Brown C., Rasmussen H. Insulin secretion: combined effects of phorbol ester and A23187. Biochem Biophys Res Commun. 1983 Dec 16;117(2):448–455. doi: 10.1016/0006-291x(83)91221-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES